Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{20\left(\sqrt{6}+\sqrt{2}\right)}{\left(\sqrt{6}-\sqrt{2}\right)\left(\sqrt{6}+\sqrt{2}\right)}
Whakangāwaritia te tauraro o \frac{20}{\sqrt{6}-\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{6}+\sqrt{2}.
\frac{20\left(\sqrt{6}+\sqrt{2}\right)}{\left(\sqrt{6}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Whakaarohia te \left(\sqrt{6}-\sqrt{2}\right)\left(\sqrt{6}+\sqrt{2}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{20\left(\sqrt{6}+\sqrt{2}\right)}{6-2}
Pūrua \sqrt{6}. Pūrua \sqrt{2}.
\frac{20\left(\sqrt{6}+\sqrt{2}\right)}{4}
Tangohia te 2 i te 6, ka 4.
5\left(\sqrt{6}+\sqrt{2}\right)
Whakawehea te 20\left(\sqrt{6}+\sqrt{2}\right) ki te 4, kia riro ko 5\left(\sqrt{6}+\sqrt{2}\right).
5\sqrt{6}+5\sqrt{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te \sqrt{6}+\sqrt{2}.