Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Wāhi Tūturu
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(2-3i\right)\left(5-4i\right)}{\left(5+4i\right)\left(5-4i\right)}
Whakareatia te taurunga me te tauraro ki te haumi hiato o te tauraro, 5-4i.
\frac{\left(2-3i\right)\left(5-4i\right)}{5^{2}-4^{2}i^{2}}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2-3i\right)\left(5-4i\right)}{41}
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
\frac{2\times 5+2\times \left(-4i\right)-3i\times 5-3\left(-4\right)i^{2}}{41}
Me whakarea ngā tau matatini 2-3i me 5-4i pēnā i te whakarea huarua.
\frac{2\times 5+2\times \left(-4i\right)-3i\times 5-3\left(-4\right)\left(-1\right)}{41}
Hei tōna tikanga, ko te i^{2} ko -1.
\frac{10-8i-15i-12}{41}
Mahia ngā whakarea i roto o 2\times 5+2\times \left(-4i\right)-3i\times 5-3\left(-4\right)\left(-1\right).
\frac{10-12+\left(-8-15\right)i}{41}
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 10-8i-15i-12.
\frac{-2-23i}{41}
Mahia ngā tāpiri i roto o 10-12+\left(-8-15\right)i.
-\frac{2}{41}-\frac{23}{41}i
Whakawehea te -2-23i ki te 41, kia riro ko -\frac{2}{41}-\frac{23}{41}i.
Re(\frac{\left(2-3i\right)\left(5-4i\right)}{\left(5+4i\right)\left(5-4i\right)})
Me whakarea te taurunga me te tauraro o \frac{2-3i}{5+4i} ki te haumi hiato o te tauraro, 5-4i.
Re(\frac{\left(2-3i\right)\left(5-4i\right)}{5^{2}-4^{2}i^{2}})
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(2-3i\right)\left(5-4i\right)}{41})
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
Re(\frac{2\times 5+2\times \left(-4i\right)-3i\times 5-3\left(-4\right)i^{2}}{41})
Me whakarea ngā tau matatini 2-3i me 5-4i pēnā i te whakarea huarua.
Re(\frac{2\times 5+2\times \left(-4i\right)-3i\times 5-3\left(-4\right)\left(-1\right)}{41})
Hei tōna tikanga, ko te i^{2} ko -1.
Re(\frac{10-8i-15i-12}{41})
Mahia ngā whakarea i roto o 2\times 5+2\times \left(-4i\right)-3i\times 5-3\left(-4\right)\left(-1\right).
Re(\frac{10-12+\left(-8-15\right)i}{41})
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 10-8i-15i-12.
Re(\frac{-2-23i}{41})
Mahia ngā tāpiri i roto o 10-12+\left(-8-15\right)i.
Re(-\frac{2}{41}-\frac{23}{41}i)
Whakawehea te -2-23i ki te 41, kia riro ko -\frac{2}{41}-\frac{23}{41}i.
-\frac{2}{41}
Ko te wāhi tūturu o -\frac{2}{41}-\frac{23}{41}i ko -\frac{2}{41}.