Aromātai
-\frac{2}{41}-\frac{23}{41}i\approx -0.048780488-0.56097561i
Wāhi Tūturu
-\frac{2}{41} = -0.04878048780487805
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(2-3i\right)\left(5-4i\right)}{\left(5+4i\right)\left(5-4i\right)}
Whakareatia te taurunga me te tauraro ki te haumi hiato o te tauraro, 5-4i.
\frac{\left(2-3i\right)\left(5-4i\right)}{5^{2}-4^{2}i^{2}}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2-3i\right)\left(5-4i\right)}{41}
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
\frac{2\times 5+2\times \left(-4i\right)-3i\times 5-3\left(-4\right)i^{2}}{41}
Me whakarea ngā tau matatini 2-3i me 5-4i pēnā i te whakarea huarua.
\frac{2\times 5+2\times \left(-4i\right)-3i\times 5-3\left(-4\right)\left(-1\right)}{41}
Hei tōna tikanga, ko te i^{2} ko -1.
\frac{10-8i-15i-12}{41}
Mahia ngā whakarea i roto o 2\times 5+2\times \left(-4i\right)-3i\times 5-3\left(-4\right)\left(-1\right).
\frac{10-12+\left(-8-15\right)i}{41}
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 10-8i-15i-12.
\frac{-2-23i}{41}
Mahia ngā tāpiri i roto o 10-12+\left(-8-15\right)i.
-\frac{2}{41}-\frac{23}{41}i
Whakawehea te -2-23i ki te 41, kia riro ko -\frac{2}{41}-\frac{23}{41}i.
Re(\frac{\left(2-3i\right)\left(5-4i\right)}{\left(5+4i\right)\left(5-4i\right)})
Me whakarea te taurunga me te tauraro o \frac{2-3i}{5+4i} ki te haumi hiato o te tauraro, 5-4i.
Re(\frac{\left(2-3i\right)\left(5-4i\right)}{5^{2}-4^{2}i^{2}})
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(2-3i\right)\left(5-4i\right)}{41})
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
Re(\frac{2\times 5+2\times \left(-4i\right)-3i\times 5-3\left(-4\right)i^{2}}{41})
Me whakarea ngā tau matatini 2-3i me 5-4i pēnā i te whakarea huarua.
Re(\frac{2\times 5+2\times \left(-4i\right)-3i\times 5-3\left(-4\right)\left(-1\right)}{41})
Hei tōna tikanga, ko te i^{2} ko -1.
Re(\frac{10-8i-15i-12}{41})
Mahia ngā whakarea i roto o 2\times 5+2\times \left(-4i\right)-3i\times 5-3\left(-4\right)\left(-1\right).
Re(\frac{10-12+\left(-8-15\right)i}{41})
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 10-8i-15i-12.
Re(\frac{-2-23i}{41})
Mahia ngā tāpiri i roto o 10-12+\left(-8-15\right)i.
Re(-\frac{2}{41}-\frac{23}{41}i)
Whakawehea te -2-23i ki te 41, kia riro ko -\frac{2}{41}-\frac{23}{41}i.
-\frac{2}{41}
Ko te wāhi tūturu o -\frac{2}{41}-\frac{23}{41}i ko -\frac{2}{41}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}