Whakaoti mō b
b=\frac{\left(a+18\right)^{2}}{5}
a\leq -18
Whakaoti mō a
a=-\left(\sqrt{5b}+18\right)
b\geq 0
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(2+\sqrt{5}\right)\left(2+\sqrt{5}\right)}{\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right)}+\frac{2-\sqrt{5}}{2+\sqrt{5}}=a+\sqrt{5b}
Whakangāwaritia te tauraro o \frac{2+\sqrt{5}}{2-\sqrt{5}} mā te whakarea i te taurunga me te tauraro ki te 2+\sqrt{5}.
\frac{\left(2+\sqrt{5}\right)\left(2+\sqrt{5}\right)}{2^{2}-\left(\sqrt{5}\right)^{2}}+\frac{2-\sqrt{5}}{2+\sqrt{5}}=a+\sqrt{5b}
Whakaarohia te \left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2+\sqrt{5}\right)\left(2+\sqrt{5}\right)}{4-5}+\frac{2-\sqrt{5}}{2+\sqrt{5}}=a+\sqrt{5b}
Pūrua 2. Pūrua \sqrt{5}.
\frac{\left(2+\sqrt{5}\right)\left(2+\sqrt{5}\right)}{-1}+\frac{2-\sqrt{5}}{2+\sqrt{5}}=a+\sqrt{5b}
Tangohia te 5 i te 4, ka -1.
\frac{\left(2+\sqrt{5}\right)^{2}}{-1}+\frac{2-\sqrt{5}}{2+\sqrt{5}}=a+\sqrt{5b}
Whakareatia te 2+\sqrt{5} ki te 2+\sqrt{5}, ka \left(2+\sqrt{5}\right)^{2}.
\frac{4+4\sqrt{5}+\left(\sqrt{5}\right)^{2}}{-1}+\frac{2-\sqrt{5}}{2+\sqrt{5}}=a+\sqrt{5b}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2+\sqrt{5}\right)^{2}.
\frac{4+4\sqrt{5}+5}{-1}+\frac{2-\sqrt{5}}{2+\sqrt{5}}=a+\sqrt{5b}
Ko te pūrua o \sqrt{5} ko 5.
\frac{9+4\sqrt{5}}{-1}+\frac{2-\sqrt{5}}{2+\sqrt{5}}=a+\sqrt{5b}
Tāpirihia te 4 ki te 5, ka 9.
-9-4\sqrt{5}+\frac{2-\sqrt{5}}{2+\sqrt{5}}=a+\sqrt{5b}
Ko te mea whakawehea ki te -1 ka hōmai i tōna kōaro. Hei kimi i te tauaro o 9+4\sqrt{5}, kimihia te tauaro o ia taurangi.
-9-4\sqrt{5}+\frac{\left(2-\sqrt{5}\right)\left(2-\sqrt{5}\right)}{\left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right)}=a+\sqrt{5b}
Whakangāwaritia te tauraro o \frac{2-\sqrt{5}}{2+\sqrt{5}} mā te whakarea i te taurunga me te tauraro ki te 2-\sqrt{5}.
-9-4\sqrt{5}+\frac{\left(2-\sqrt{5}\right)\left(2-\sqrt{5}\right)}{2^{2}-\left(\sqrt{5}\right)^{2}}=a+\sqrt{5b}
Whakaarohia te \left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
-9-4\sqrt{5}+\frac{\left(2-\sqrt{5}\right)\left(2-\sqrt{5}\right)}{4-5}=a+\sqrt{5b}
Pūrua 2. Pūrua \sqrt{5}.
-9-4\sqrt{5}+\frac{\left(2-\sqrt{5}\right)\left(2-\sqrt{5}\right)}{-1}=a+\sqrt{5b}
Tangohia te 5 i te 4, ka -1.
-9-4\sqrt{5}+\frac{\left(2-\sqrt{5}\right)^{2}}{-1}=a+\sqrt{5b}
Whakareatia te 2-\sqrt{5} ki te 2-\sqrt{5}, ka \left(2-\sqrt{5}\right)^{2}.
-9-4\sqrt{5}+\frac{4-4\sqrt{5}+\left(\sqrt{5}\right)^{2}}{-1}=a+\sqrt{5b}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(2-\sqrt{5}\right)^{2}.
-9-4\sqrt{5}+\frac{4-4\sqrt{5}+5}{-1}=a+\sqrt{5b}
Ko te pūrua o \sqrt{5} ko 5.
-9-4\sqrt{5}+\frac{9-4\sqrt{5}}{-1}=a+\sqrt{5b}
Tāpirihia te 4 ki te 5, ka 9.
-9-4\sqrt{5}-9+4\sqrt{5}=a+\sqrt{5b}
Ko te mea whakawehea ki te -1 ka hōmai i tōna kōaro. Hei kimi i te tauaro o 9-4\sqrt{5}, kimihia te tauaro o ia taurangi.
-18-4\sqrt{5}+4\sqrt{5}=a+\sqrt{5b}
Tangohia te 9 i te -9, ka -18.
-18=a+\sqrt{5b}
Pahekotia te -4\sqrt{5} me 4\sqrt{5}, ka 0.
a+\sqrt{5b}=-18
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\sqrt{5b}=-18-a
Tangohia te a mai i ngā taha e rua.
5b=\left(a+18\right)^{2}
Pūruatia ngā taha e rua o te whārite.
\frac{5b}{5}=\frac{\left(a+18\right)^{2}}{5}
Whakawehea ngā taha e rua ki te 5.
b=\frac{\left(a+18\right)^{2}}{5}
Mā te whakawehe ki te 5 ka wetekia te whakareanga ki te 5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}