Tīpoka ki ngā ihirangi matua
Whakaoti mō b
Tick mark Image
Whakaoti mō a
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(2+\sqrt{5}\right)\left(2+\sqrt{5}\right)}{\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right)}+\frac{2-\sqrt{5}}{2+\sqrt{5}}=a+\sqrt{5b}
Whakangāwaritia te tauraro o \frac{2+\sqrt{5}}{2-\sqrt{5}} mā te whakarea i te taurunga me te tauraro ki te 2+\sqrt{5}.
\frac{\left(2+\sqrt{5}\right)\left(2+\sqrt{5}\right)}{2^{2}-\left(\sqrt{5}\right)^{2}}+\frac{2-\sqrt{5}}{2+\sqrt{5}}=a+\sqrt{5b}
Whakaarohia te \left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2+\sqrt{5}\right)\left(2+\sqrt{5}\right)}{4-5}+\frac{2-\sqrt{5}}{2+\sqrt{5}}=a+\sqrt{5b}
Pūrua 2. Pūrua \sqrt{5}.
\frac{\left(2+\sqrt{5}\right)\left(2+\sqrt{5}\right)}{-1}+\frac{2-\sqrt{5}}{2+\sqrt{5}}=a+\sqrt{5b}
Tangohia te 5 i te 4, ka -1.
\frac{\left(2+\sqrt{5}\right)^{2}}{-1}+\frac{2-\sqrt{5}}{2+\sqrt{5}}=a+\sqrt{5b}
Whakareatia te 2+\sqrt{5} ki te 2+\sqrt{5}, ka \left(2+\sqrt{5}\right)^{2}.
\frac{4+4\sqrt{5}+\left(\sqrt{5}\right)^{2}}{-1}+\frac{2-\sqrt{5}}{2+\sqrt{5}}=a+\sqrt{5b}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2+\sqrt{5}\right)^{2}.
\frac{4+4\sqrt{5}+5}{-1}+\frac{2-\sqrt{5}}{2+\sqrt{5}}=a+\sqrt{5b}
Ko te pūrua o \sqrt{5} ko 5.
\frac{9+4\sqrt{5}}{-1}+\frac{2-\sqrt{5}}{2+\sqrt{5}}=a+\sqrt{5b}
Tāpirihia te 4 ki te 5, ka 9.
-9-4\sqrt{5}+\frac{2-\sqrt{5}}{2+\sqrt{5}}=a+\sqrt{5b}
Ko te mea whakawehea ki te -1 ka hōmai i tōna kōaro. Hei kimi i te tauaro o 9+4\sqrt{5}, kimihia te tauaro o ia taurangi.
-9-4\sqrt{5}+\frac{\left(2-\sqrt{5}\right)\left(2-\sqrt{5}\right)}{\left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right)}=a+\sqrt{5b}
Whakangāwaritia te tauraro o \frac{2-\sqrt{5}}{2+\sqrt{5}} mā te whakarea i te taurunga me te tauraro ki te 2-\sqrt{5}.
-9-4\sqrt{5}+\frac{\left(2-\sqrt{5}\right)\left(2-\sqrt{5}\right)}{2^{2}-\left(\sqrt{5}\right)^{2}}=a+\sqrt{5b}
Whakaarohia te \left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
-9-4\sqrt{5}+\frac{\left(2-\sqrt{5}\right)\left(2-\sqrt{5}\right)}{4-5}=a+\sqrt{5b}
Pūrua 2. Pūrua \sqrt{5}.
-9-4\sqrt{5}+\frac{\left(2-\sqrt{5}\right)\left(2-\sqrt{5}\right)}{-1}=a+\sqrt{5b}
Tangohia te 5 i te 4, ka -1.
-9-4\sqrt{5}+\frac{\left(2-\sqrt{5}\right)^{2}}{-1}=a+\sqrt{5b}
Whakareatia te 2-\sqrt{5} ki te 2-\sqrt{5}, ka \left(2-\sqrt{5}\right)^{2}.
-9-4\sqrt{5}+\frac{4-4\sqrt{5}+\left(\sqrt{5}\right)^{2}}{-1}=a+\sqrt{5b}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(2-\sqrt{5}\right)^{2}.
-9-4\sqrt{5}+\frac{4-4\sqrt{5}+5}{-1}=a+\sqrt{5b}
Ko te pūrua o \sqrt{5} ko 5.
-9-4\sqrt{5}+\frac{9-4\sqrt{5}}{-1}=a+\sqrt{5b}
Tāpirihia te 4 ki te 5, ka 9.
-9-4\sqrt{5}-9+4\sqrt{5}=a+\sqrt{5b}
Ko te mea whakawehea ki te -1 ka hōmai i tōna kōaro. Hei kimi i te tauaro o 9-4\sqrt{5}, kimihia te tauaro o ia taurangi.
-18-4\sqrt{5}+4\sqrt{5}=a+\sqrt{5b}
Tangohia te 9 i te -9, ka -18.
-18=a+\sqrt{5b}
Pahekotia te -4\sqrt{5} me 4\sqrt{5}, ka 0.
a+\sqrt{5b}=-18
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\sqrt{5b}=-18-a
Tangohia te a mai i ngā taha e rua.
5b=\left(a+18\right)^{2}
Pūruatia ngā taha e rua o te whārite.
\frac{5b}{5}=\frac{\left(a+18\right)^{2}}{5}
Whakawehea ngā taha e rua ki te 5.
b=\frac{\left(a+18\right)^{2}}{5}
Mā te whakawehe ki te 5 ka wetekia te whakareanga ki te 5.