Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(x+3\right)\left(2x^{3}-12x^{2}+9x\right)=2x\left(x^{2}+3\right)\left(x-3\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -3,0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 4\left(x+3\right)x^{2}\left(x^{2}+3\right), arā, te tauraro pātahi he tino iti rawa te kitea o 4x^{2}\left(x^{2}+3\right),2x^{2}+6x.
2x^{4}-6x^{3}-27x^{2}+27x=2x\left(x^{2}+3\right)\left(x-3\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te x+3 ki te 2x^{3}-12x^{2}+9x ka whakakotahi i ngā kupu rite.
2x^{4}-6x^{3}-27x^{2}+27x=\left(2x^{3}+6x\right)\left(x-3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2x ki te x^{2}+3.
2x^{4}-6x^{3}-27x^{2}+27x=2x^{4}-6x^{3}+6x^{2}-18x
Whakamahia te āhuatanga tohatoha hei whakarea te 2x^{3}+6x ki te x-3.
2x^{4}-6x^{3}-27x^{2}+27x-2x^{4}=-6x^{3}+6x^{2}-18x
Tangohia te 2x^{4} mai i ngā taha e rua.
-6x^{3}-27x^{2}+27x=-6x^{3}+6x^{2}-18x
Pahekotia te 2x^{4} me -2x^{4}, ka 0.
-6x^{3}-27x^{2}+27x+6x^{3}=6x^{2}-18x
Me tāpiri te 6x^{3} ki ngā taha e rua.
-27x^{2}+27x=6x^{2}-18x
Pahekotia te -6x^{3} me 6x^{3}, ka 0.
-27x^{2}+27x-6x^{2}=-18x
Tangohia te 6x^{2} mai i ngā taha e rua.
-33x^{2}+27x=-18x
Pahekotia te -27x^{2} me -6x^{2}, ka -33x^{2}.
-33x^{2}+27x+18x=0
Me tāpiri te 18x ki ngā taha e rua.
-33x^{2}+45x=0
Pahekotia te 27x me 18x, ka 45x.
x\left(-33x+45\right)=0
Tauwehea te x.
x=0 x=\frac{15}{11}
Hei kimi otinga whārite, me whakaoti te x=0 me te -33x+45=0.
x=\frac{15}{11}
Tē taea kia ōrite te tāupe x ki 0.
\left(x+3\right)\left(2x^{3}-12x^{2}+9x\right)=2x\left(x^{2}+3\right)\left(x-3\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -3,0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 4\left(x+3\right)x^{2}\left(x^{2}+3\right), arā, te tauraro pātahi he tino iti rawa te kitea o 4x^{2}\left(x^{2}+3\right),2x^{2}+6x.
2x^{4}-6x^{3}-27x^{2}+27x=2x\left(x^{2}+3\right)\left(x-3\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te x+3 ki te 2x^{3}-12x^{2}+9x ka whakakotahi i ngā kupu rite.
2x^{4}-6x^{3}-27x^{2}+27x=\left(2x^{3}+6x\right)\left(x-3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2x ki te x^{2}+3.
2x^{4}-6x^{3}-27x^{2}+27x=2x^{4}-6x^{3}+6x^{2}-18x
Whakamahia te āhuatanga tohatoha hei whakarea te 2x^{3}+6x ki te x-3.
2x^{4}-6x^{3}-27x^{2}+27x-2x^{4}=-6x^{3}+6x^{2}-18x
Tangohia te 2x^{4} mai i ngā taha e rua.
-6x^{3}-27x^{2}+27x=-6x^{3}+6x^{2}-18x
Pahekotia te 2x^{4} me -2x^{4}, ka 0.
-6x^{3}-27x^{2}+27x+6x^{3}=6x^{2}-18x
Me tāpiri te 6x^{3} ki ngā taha e rua.
-27x^{2}+27x=6x^{2}-18x
Pahekotia te -6x^{3} me 6x^{3}, ka 0.
-27x^{2}+27x-6x^{2}=-18x
Tangohia te 6x^{2} mai i ngā taha e rua.
-33x^{2}+27x=-18x
Pahekotia te -27x^{2} me -6x^{2}, ka -33x^{2}.
-33x^{2}+27x+18x=0
Me tāpiri te 18x ki ngā taha e rua.
-33x^{2}+45x=0
Pahekotia te 27x me 18x, ka 45x.
x=\frac{-45±\sqrt{45^{2}}}{2\left(-33\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -33 mō a, 45 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-45±45}{2\left(-33\right)}
Tuhia te pūtakerua o te 45^{2}.
x=\frac{-45±45}{-66}
Whakareatia 2 ki te -33.
x=\frac{0}{-66}
Nā, me whakaoti te whārite x=\frac{-45±45}{-66} ina he tāpiri te ±. Tāpiri -45 ki te 45.
x=0
Whakawehe 0 ki te -66.
x=-\frac{90}{-66}
Nā, me whakaoti te whārite x=\frac{-45±45}{-66} ina he tango te ±. Tango 45 mai i -45.
x=\frac{15}{11}
Whakahekea te hautanga \frac{-90}{-66} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
x=0 x=\frac{15}{11}
Kua oti te whārite te whakatau.
x=\frac{15}{11}
Tē taea kia ōrite te tāupe x ki 0.
\left(x+3\right)\left(2x^{3}-12x^{2}+9x\right)=2x\left(x^{2}+3\right)\left(x-3\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -3,0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 4\left(x+3\right)x^{2}\left(x^{2}+3\right), arā, te tauraro pātahi he tino iti rawa te kitea o 4x^{2}\left(x^{2}+3\right),2x^{2}+6x.
2x^{4}-6x^{3}-27x^{2}+27x=2x\left(x^{2}+3\right)\left(x-3\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te x+3 ki te 2x^{3}-12x^{2}+9x ka whakakotahi i ngā kupu rite.
2x^{4}-6x^{3}-27x^{2}+27x=\left(2x^{3}+6x\right)\left(x-3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2x ki te x^{2}+3.
2x^{4}-6x^{3}-27x^{2}+27x=2x^{4}-6x^{3}+6x^{2}-18x
Whakamahia te āhuatanga tohatoha hei whakarea te 2x^{3}+6x ki te x-3.
2x^{4}-6x^{3}-27x^{2}+27x-2x^{4}=-6x^{3}+6x^{2}-18x
Tangohia te 2x^{4} mai i ngā taha e rua.
-6x^{3}-27x^{2}+27x=-6x^{3}+6x^{2}-18x
Pahekotia te 2x^{4} me -2x^{4}, ka 0.
-6x^{3}-27x^{2}+27x+6x^{3}=6x^{2}-18x
Me tāpiri te 6x^{3} ki ngā taha e rua.
-27x^{2}+27x=6x^{2}-18x
Pahekotia te -6x^{3} me 6x^{3}, ka 0.
-27x^{2}+27x-6x^{2}=-18x
Tangohia te 6x^{2} mai i ngā taha e rua.
-33x^{2}+27x=-18x
Pahekotia te -27x^{2} me -6x^{2}, ka -33x^{2}.
-33x^{2}+27x+18x=0
Me tāpiri te 18x ki ngā taha e rua.
-33x^{2}+45x=0
Pahekotia te 27x me 18x, ka 45x.
\frac{-33x^{2}+45x}{-33}=\frac{0}{-33}
Whakawehea ngā taha e rua ki te -33.
x^{2}+\frac{45}{-33}x=\frac{0}{-33}
Mā te whakawehe ki te -33 ka wetekia te whakareanga ki te -33.
x^{2}-\frac{15}{11}x=\frac{0}{-33}
Whakahekea te hautanga \frac{45}{-33} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
x^{2}-\frac{15}{11}x=0
Whakawehe 0 ki te -33.
x^{2}-\frac{15}{11}x+\left(-\frac{15}{22}\right)^{2}=\left(-\frac{15}{22}\right)^{2}
Whakawehea te -\frac{15}{11}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{15}{22}. Nā, tāpiria te pūrua o te -\frac{15}{22} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{15}{11}x+\frac{225}{484}=\frac{225}{484}
Pūruatia -\frac{15}{22} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(x-\frac{15}{22}\right)^{2}=\frac{225}{484}
Tauwehea x^{2}-\frac{15}{11}x+\frac{225}{484}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{15}{22}\right)^{2}}=\sqrt{\frac{225}{484}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{15}{22}=\frac{15}{22} x-\frac{15}{22}=-\frac{15}{22}
Whakarūnātia.
x=\frac{15}{11} x=0
Me tāpiri \frac{15}{22} ki ngā taha e rua o te whārite.
x=\frac{15}{11}
Tē taea kia ōrite te tāupe x ki 0.