Tīpoka ki ngā ihirangi matua
Kimi Pārōnaki e ai ki x
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(-6x^{1}+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(2x^{2})-2x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(-6x^{1}+1)}{\left(-6x^{1}+1\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{\left(-6x^{1}+1\right)\times 2\times 2x^{2-1}-2x^{2}\left(-6\right)x^{1-1}}{\left(-6x^{1}+1\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{\left(-6x^{1}+1\right)\times 4x^{1}-2x^{2}\left(-6\right)x^{0}}{\left(-6x^{1}+1\right)^{2}}
Mahia ngā tātaitanga.
\frac{-6x^{1}\times 4x^{1}+4x^{1}-2x^{2}\left(-6\right)x^{0}}{\left(-6x^{1}+1\right)^{2}}
Whakarohaina mā te āhuatanga tohatoha.
\frac{-6\times 4x^{1+1}+4x^{1}-2\left(-6\right)x^{2}}{\left(-6x^{1}+1\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{-24x^{2}+4x^{1}-\left(-12x^{2}\right)}{\left(-6x^{1}+1\right)^{2}}
Mahia ngā tātaitanga.
\frac{\left(-24-\left(-12\right)\right)x^{2}+4x^{1}}{\left(-6x^{1}+1\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
\frac{-12x^{2}+4x^{1}}{\left(-6x^{1}+1\right)^{2}}
Tango -12 mai i -24.
\frac{4x\left(-3x^{1}+x^{0}\right)}{\left(-6x^{1}+1\right)^{2}}
Tauwehea te 4x.
\frac{4x\left(-3x+x^{0}\right)}{\left(-6x+1\right)^{2}}
Mō tētahi kupu t, t^{1}=t.
\frac{4x\left(-3x+1\right)}{\left(-6x+1\right)^{2}}
Mō tētahi kupu t mahue te 0, t^{0}=1.