Aromātai
-\frac{\sqrt{6}}{9}+\frac{2}{3}\approx 0.39450114
Tauwehe
\frac{\sqrt{6} {(\sqrt{6} - 1)}}{9} = 0.3945011396907579
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
\frac{ 2 \sqrt{ 3 } - \sqrt{ 2 } }{ 2 \sqrt{ 3 } + \sqrt{ 3 } }
Tohaina
Kua tāruatia ki te papatopenga
\frac{2\sqrt{3}-\sqrt{2}}{3\sqrt{3}}
Pahekotia te 2\sqrt{3} me \sqrt{3}, ka 3\sqrt{3}.
\frac{\left(2\sqrt{3}-\sqrt{2}\right)\sqrt{3}}{3\left(\sqrt{3}\right)^{2}}
Whakangāwaritia te tauraro o \frac{2\sqrt{3}-\sqrt{2}}{3\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\frac{\left(2\sqrt{3}-\sqrt{2}\right)\sqrt{3}}{3\times 3}
Ko te pūrua o \sqrt{3} ko 3.
\frac{\left(2\sqrt{3}-\sqrt{2}\right)\sqrt{3}}{9}
Whakareatia te 3 ki te 3, ka 9.
\frac{2\left(\sqrt{3}\right)^{2}-\sqrt{2}\sqrt{3}}{9}
Whakamahia te āhuatanga tohatoha hei whakarea te 2\sqrt{3}-\sqrt{2} ki te \sqrt{3}.
\frac{2\times 3-\sqrt{2}\sqrt{3}}{9}
Ko te pūrua o \sqrt{3} ko 3.
\frac{6-\sqrt{2}\sqrt{3}}{9}
Whakareatia te 2 ki te 3, ka 6.
\frac{6-\sqrt{6}}{9}
Hei whakarea \sqrt{2} me \sqrt{3}, whakareatia ngā tau i raro i te pūtake rua.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}