Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{2\sqrt{3}-\sqrt{2}}{3\sqrt{3}}
Pahekotia te 2\sqrt{3} me \sqrt{3}, ka 3\sqrt{3}.
\frac{\left(2\sqrt{3}-\sqrt{2}\right)\sqrt{3}}{3\left(\sqrt{3}\right)^{2}}
Whakangāwaritia te tauraro o \frac{2\sqrt{3}-\sqrt{2}}{3\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\frac{\left(2\sqrt{3}-\sqrt{2}\right)\sqrt{3}}{3\times 3}
Ko te pūrua o \sqrt{3} ko 3.
\frac{\left(2\sqrt{3}-\sqrt{2}\right)\sqrt{3}}{9}
Whakareatia te 3 ki te 3, ka 9.
\frac{2\left(\sqrt{3}\right)^{2}-\sqrt{2}\sqrt{3}}{9}
Whakamahia te āhuatanga tohatoha hei whakarea te 2\sqrt{3}-\sqrt{2} ki te \sqrt{3}.
\frac{2\times 3-\sqrt{2}\sqrt{3}}{9}
Ko te pūrua o \sqrt{3} ko 3.
\frac{6-\sqrt{2}\sqrt{3}}{9}
Whakareatia te 2 ki te 3, ka 6.
\frac{6-\sqrt{6}}{9}
Hei whakarea \sqrt{2} me \sqrt{3}, whakareatia ngā tau i raro i te pūtake rua.