Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{2\sqrt{2}\left(5+2\sqrt{6}\right)}{\left(5-2\sqrt{6}\right)\left(5+2\sqrt{6}\right)}
Whakangāwaritia te tauraro o \frac{2\sqrt{2}}{5-2\sqrt{6}} mā te whakarea i te taurunga me te tauraro ki te 5+2\sqrt{6}.
\frac{2\sqrt{2}\left(5+2\sqrt{6}\right)}{5^{2}-\left(-2\sqrt{6}\right)^{2}}
Whakaarohia te \left(5-2\sqrt{6}\right)\left(5+2\sqrt{6}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\sqrt{2}\left(5+2\sqrt{6}\right)}{25-\left(-2\sqrt{6}\right)^{2}}
Tātaihia te 5 mā te pū o 2, kia riro ko 25.
\frac{2\sqrt{2}\left(5+2\sqrt{6}\right)}{25-\left(-2\right)^{2}\left(\sqrt{6}\right)^{2}}
Whakarohaina te \left(-2\sqrt{6}\right)^{2}.
\frac{2\sqrt{2}\left(5+2\sqrt{6}\right)}{25-4\left(\sqrt{6}\right)^{2}}
Tātaihia te -2 mā te pū o 2, kia riro ko 4.
\frac{2\sqrt{2}\left(5+2\sqrt{6}\right)}{25-4\times 6}
Ko te pūrua o \sqrt{6} ko 6.
\frac{2\sqrt{2}\left(5+2\sqrt{6}\right)}{25-24}
Whakareatia te 4 ki te 6, ka 24.
\frac{2\sqrt{2}\left(5+2\sqrt{6}\right)}{1}
Tangohia te 24 i te 25, ka 1.
2\sqrt{2}\left(5+2\sqrt{6}\right)
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
10\sqrt{2}+4\sqrt{2}\sqrt{6}
Whakamahia te āhuatanga tohatoha hei whakarea te 2\sqrt{2} ki te 5+2\sqrt{6}.
10\sqrt{2}+4\sqrt{2}\sqrt{2}\sqrt{3}
Tauwehea te 6=2\times 3. Tuhia anō te pūtake rua o te hua \sqrt{2\times 3} hei hua o ngā pūtake rua \sqrt{2}\sqrt{3}.
10\sqrt{2}+4\times 2\sqrt{3}
Whakareatia te \sqrt{2} ki te \sqrt{2}, ka 2.
10\sqrt{2}+8\sqrt{3}
Whakareatia te 4 ki te 2, ka 8.