Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\frac{2}{n}-1}{n}
Tuhia te 2\times \frac{1}{n} hei hautanga kotahi.
\frac{\frac{2}{n}-\frac{n}{n}}{n}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{n}{n}.
\frac{\frac{2-n}{n}}{n}
Tā te mea he rite te tauraro o \frac{2}{n} me \frac{n}{n}, me tango rāua mā te tango i ō raua taurunga.
\frac{2-n}{nn}
Tuhia te \frac{\frac{2-n}{n}}{n} hei hautanga kotahi.
\frac{2-n}{n^{2}}
Whakareatia te n ki te n, ka n^{2}.
\frac{\frac{2}{n}-1}{n}
Tuhia te 2\times \frac{1}{n} hei hautanga kotahi.
\frac{\frac{2}{n}-\frac{n}{n}}{n}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{n}{n}.
\frac{\frac{2-n}{n}}{n}
Tā te mea he rite te tauraro o \frac{2}{n} me \frac{n}{n}, me tango rāua mā te tango i ō raua taurunga.
\frac{2-n}{nn}
Tuhia te \frac{\frac{2-n}{n}}{n} hei hautanga kotahi.
\frac{2-n}{n^{2}}
Whakareatia te n ki te n, ka n^{2}.