Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3\times 2+3\left(x+2\right)\left(-\frac{1}{3}\right)=\left(x+2\right)x
Tē taea kia ōrite te tāupe x ki -2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 3\left(x+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o x+2,3.
6+3\left(x+2\right)\left(-\frac{1}{3}\right)=\left(x+2\right)x
Whakareatia te 3 ki te 2, ka 6.
6-\left(x+2\right)=\left(x+2\right)x
Whakareatia te 3 ki te -\frac{1}{3}, ka -1.
6-x-2=\left(x+2\right)x
Hei kimi i te tauaro o x+2, kimihia te tauaro o ia taurangi.
4-x=\left(x+2\right)x
Tangohia te 2 i te 6, ka 4.
4-x=x^{2}+2x
Whakamahia te āhuatanga tohatoha hei whakarea te x+2 ki te x.
4-x-x^{2}=2x
Tangohia te x^{2} mai i ngā taha e rua.
4-x-x^{2}-2x=0
Tangohia te 2x mai i ngā taha e rua.
4-3x-x^{2}=0
Pahekotia te -x me -2x, ka -3x.
-x^{2}-3x+4=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-3 ab=-4=-4
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -x^{2}+ax+bx+4. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-4 2,-2
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -4.
1-4=-3 2-2=0
Tātaihia te tapeke mō ia takirua.
a=1 b=-4
Ko te otinga te takirua ka hoatu i te tapeke -3.
\left(-x^{2}+x\right)+\left(-4x+4\right)
Tuhia anō te -x^{2}-3x+4 hei \left(-x^{2}+x\right)+\left(-4x+4\right).
x\left(-x+1\right)+4\left(-x+1\right)
Tauwehea te x i te tuatahi me te 4 i te rōpū tuarua.
\left(-x+1\right)\left(x+4\right)
Whakatauwehea atu te kīanga pātahi -x+1 mā te whakamahi i te āhuatanga tātai tohatoha.
x=1 x=-4
Hei kimi otinga whārite, me whakaoti te -x+1=0 me te x+4=0.
3\times 2+3\left(x+2\right)\left(-\frac{1}{3}\right)=\left(x+2\right)x
Tē taea kia ōrite te tāupe x ki -2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 3\left(x+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o x+2,3.
6+3\left(x+2\right)\left(-\frac{1}{3}\right)=\left(x+2\right)x
Whakareatia te 3 ki te 2, ka 6.
6-\left(x+2\right)=\left(x+2\right)x
Whakareatia te 3 ki te -\frac{1}{3}, ka -1.
6-x-2=\left(x+2\right)x
Hei kimi i te tauaro o x+2, kimihia te tauaro o ia taurangi.
4-x=\left(x+2\right)x
Tangohia te 2 i te 6, ka 4.
4-x=x^{2}+2x
Whakamahia te āhuatanga tohatoha hei whakarea te x+2 ki te x.
4-x-x^{2}=2x
Tangohia te x^{2} mai i ngā taha e rua.
4-x-x^{2}-2x=0
Tangohia te 2x mai i ngā taha e rua.
4-3x-x^{2}=0
Pahekotia te -x me -2x, ka -3x.
-x^{2}-3x+4=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-1\right)\times 4}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, -3 mō b, me 4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-1\right)\times 4}}{2\left(-1\right)}
Pūrua -3.
x=\frac{-\left(-3\right)±\sqrt{9+4\times 4}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-\left(-3\right)±\sqrt{9+16}}{2\left(-1\right)}
Whakareatia 4 ki te 4.
x=\frac{-\left(-3\right)±\sqrt{25}}{2\left(-1\right)}
Tāpiri 9 ki te 16.
x=\frac{-\left(-3\right)±5}{2\left(-1\right)}
Tuhia te pūtakerua o te 25.
x=\frac{3±5}{2\left(-1\right)}
Ko te tauaro o -3 ko 3.
x=\frac{3±5}{-2}
Whakareatia 2 ki te -1.
x=\frac{8}{-2}
Nā, me whakaoti te whārite x=\frac{3±5}{-2} ina he tāpiri te ±. Tāpiri 3 ki te 5.
x=-4
Whakawehe 8 ki te -2.
x=-\frac{2}{-2}
Nā, me whakaoti te whārite x=\frac{3±5}{-2} ina he tango te ±. Tango 5 mai i 3.
x=1
Whakawehe -2 ki te -2.
x=-4 x=1
Kua oti te whārite te whakatau.
3\times 2+3\left(x+2\right)\left(-\frac{1}{3}\right)=\left(x+2\right)x
Tē taea kia ōrite te tāupe x ki -2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 3\left(x+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o x+2,3.
6+3\left(x+2\right)\left(-\frac{1}{3}\right)=\left(x+2\right)x
Whakareatia te 3 ki te 2, ka 6.
6-\left(x+2\right)=\left(x+2\right)x
Whakareatia te 3 ki te -\frac{1}{3}, ka -1.
6-x-2=\left(x+2\right)x
Hei kimi i te tauaro o x+2, kimihia te tauaro o ia taurangi.
4-x=\left(x+2\right)x
Tangohia te 2 i te 6, ka 4.
4-x=x^{2}+2x
Whakamahia te āhuatanga tohatoha hei whakarea te x+2 ki te x.
4-x-x^{2}=2x
Tangohia te x^{2} mai i ngā taha e rua.
4-x-x^{2}-2x=0
Tangohia te 2x mai i ngā taha e rua.
4-3x-x^{2}=0
Pahekotia te -x me -2x, ka -3x.
-3x-x^{2}=-4
Tangohia te 4 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-x^{2}-3x=-4
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-x^{2}-3x}{-1}=-\frac{4}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\left(-\frac{3}{-1}\right)x=-\frac{4}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}+3x=-\frac{4}{-1}
Whakawehe -3 ki te -1.
x^{2}+3x=4
Whakawehe -4 ki te -1.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=4+\left(\frac{3}{2}\right)^{2}
Whakawehea te 3, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{3}{2}. Nā, tāpiria te pūrua o te \frac{3}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+3x+\frac{9}{4}=4+\frac{9}{4}
Pūruatia \frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+3x+\frac{9}{4}=\frac{25}{4}
Tāpiri 4 ki te \frac{9}{4}.
\left(x+\frac{3}{2}\right)^{2}=\frac{25}{4}
Tauwehea x^{2}+3x+\frac{9}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{3}{2}=\frac{5}{2} x+\frac{3}{2}=-\frac{5}{2}
Whakarūnātia.
x=1 x=-4
Me tango \frac{3}{2} mai i ngā taha e rua o te whārite.