Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{2\left(5+\sqrt{3}\right)}{\left(5-\sqrt{3}\right)\left(5+\sqrt{3}\right)}
Whakangāwaritia te tauraro o \frac{2}{5-\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te 5+\sqrt{3}.
\frac{2\left(5+\sqrt{3}\right)}{5^{2}-\left(\sqrt{3}\right)^{2}}
Whakaarohia te \left(5-\sqrt{3}\right)\left(5+\sqrt{3}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(5+\sqrt{3}\right)}{25-3}
Pūrua 5. Pūrua \sqrt{3}.
\frac{2\left(5+\sqrt{3}\right)}{22}
Tangohia te 3 i te 25, ka 22.
\frac{1}{11}\left(5+\sqrt{3}\right)
Whakawehea te 2\left(5+\sqrt{3}\right) ki te 22, kia riro ko \frac{1}{11}\left(5+\sqrt{3}\right).
\frac{1}{11}\times 5+\frac{1}{11}\sqrt{3}
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{11} ki te 5+\sqrt{3}.
\frac{5}{11}+\frac{1}{11}\sqrt{3}
Whakareatia te \frac{1}{11} ki te 5, ka \frac{5}{11}.