Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{2\left(5+\sqrt{2}\right)}{\left(5-\sqrt{2}\right)\left(5+\sqrt{2}\right)}
Whakangāwaritia te tauraro o \frac{2}{5-\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te 5+\sqrt{2}.
\frac{2\left(5+\sqrt{2}\right)}{5^{2}-\left(\sqrt{2}\right)^{2}}
Whakaarohia te \left(5-\sqrt{2}\right)\left(5+\sqrt{2}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(5+\sqrt{2}\right)}{25-2}
Pūrua 5. Pūrua \sqrt{2}.
\frac{2\left(5+\sqrt{2}\right)}{23}
Tangohia te 2 i te 25, ka 23.
\frac{10+2\sqrt{2}}{23}
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 5+\sqrt{2}.