Aromātai
\frac{2\left(\sqrt{2}+5\right)}{23}\approx 0.557757701
Tohaina
Kua tāruatia ki te papatopenga
\frac{2\left(5+\sqrt{2}\right)}{\left(5-\sqrt{2}\right)\left(5+\sqrt{2}\right)}
Whakangāwaritia te tauraro o \frac{2}{5-\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te 5+\sqrt{2}.
\frac{2\left(5+\sqrt{2}\right)}{5^{2}-\left(\sqrt{2}\right)^{2}}
Whakaarohia te \left(5-\sqrt{2}\right)\left(5+\sqrt{2}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(5+\sqrt{2}\right)}{25-2}
Pūrua 5. Pūrua \sqrt{2}.
\frac{2\left(5+\sqrt{2}\right)}{23}
Tangohia te 2 i te 25, ka 23.
\frac{10+2\sqrt{2}}{23}
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 5+\sqrt{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}