Whakaoti mō x
x=-\frac{2}{3}\approx -0.666666667
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{2}{3}x+\frac{2}{3}\left(-4\right)=-\frac{7}{12}\left(x+6\right)
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{2}{3} ki te x-4.
\frac{2}{3}x+\frac{2\left(-4\right)}{3}=-\frac{7}{12}\left(x+6\right)
Tuhia te \frac{2}{3}\left(-4\right) hei hautanga kotahi.
\frac{2}{3}x+\frac{-8}{3}=-\frac{7}{12}\left(x+6\right)
Whakareatia te 2 ki te -4, ka -8.
\frac{2}{3}x-\frac{8}{3}=-\frac{7}{12}\left(x+6\right)
Ka taea te hautanga \frac{-8}{3} te tuhi anō ko -\frac{8}{3} mā te tango i te tohu tōraro.
\frac{2}{3}x-\frac{8}{3}=-\frac{7}{12}x-\frac{7}{12}\times 6
Whakamahia te āhuatanga tohatoha hei whakarea te -\frac{7}{12} ki te x+6.
\frac{2}{3}x-\frac{8}{3}=-\frac{7}{12}x+\frac{-7\times 6}{12}
Tuhia te -\frac{7}{12}\times 6 hei hautanga kotahi.
\frac{2}{3}x-\frac{8}{3}=-\frac{7}{12}x+\frac{-42}{12}
Whakareatia te -7 ki te 6, ka -42.
\frac{2}{3}x-\frac{8}{3}=-\frac{7}{12}x-\frac{7}{2}
Whakahekea te hautanga \frac{-42}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
\frac{2}{3}x-\frac{8}{3}+\frac{7}{12}x=-\frac{7}{2}
Me tāpiri te \frac{7}{12}x ki ngā taha e rua.
\frac{5}{4}x-\frac{8}{3}=-\frac{7}{2}
Pahekotia te \frac{2}{3}x me \frac{7}{12}x, ka \frac{5}{4}x.
\frac{5}{4}x=-\frac{7}{2}+\frac{8}{3}
Me tāpiri te \frac{8}{3} ki ngā taha e rua.
\frac{5}{4}x=-\frac{21}{6}+\frac{16}{6}
Ko te maha noa iti rawa atu o 2 me 3 ko 6. Me tahuri -\frac{7}{2} me \frac{8}{3} ki te hautau me te tautūnga 6.
\frac{5}{4}x=\frac{-21+16}{6}
Tā te mea he rite te tauraro o -\frac{21}{6} me \frac{16}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{5}{4}x=-\frac{5}{6}
Tāpirihia te -21 ki te 16, ka -5.
x=-\frac{5}{6}\times \frac{4}{5}
Me whakarea ngā taha e rua ki te \frac{4}{5}, te tau utu o \frac{5}{4}.
x=\frac{-5\times 4}{6\times 5}
Me whakarea te -\frac{5}{6} ki te \frac{4}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
x=\frac{-20}{30}
Mahia ngā whakarea i roto i te hautanga \frac{-5\times 4}{6\times 5}.
x=-\frac{2}{3}
Whakahekea te hautanga \frac{-20}{30} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}