Whakaoti mō x
x\leq -\frac{38}{9}
Graph
Tohaina
Kua tāruatia ki te papatopenga
8\left(x+7\right)-3x\leq 6\left(3-x\right)+2x
Me whakarea ngā taha e rua o te whārite ki te 12, arā, te tauraro pātahi he tino iti rawa te kitea o 3,4,2,6. I te mea he tōrunga te 12, kāore e huri te ahunga koreōrite.
8x+56-3x\leq 6\left(3-x\right)+2x
Whakamahia te āhuatanga tohatoha hei whakarea te 8 ki te x+7.
5x+56\leq 6\left(3-x\right)+2x
Pahekotia te 8x me -3x, ka 5x.
5x+56\leq 18-6x+2x
Whakamahia te āhuatanga tohatoha hei whakarea te 6 ki te 3-x.
5x+56\leq 18-4x
Pahekotia te -6x me 2x, ka -4x.
5x+56+4x\leq 18
Me tāpiri te 4x ki ngā taha e rua.
9x+56\leq 18
Pahekotia te 5x me 4x, ka 9x.
9x\leq 18-56
Tangohia te 56 mai i ngā taha e rua.
9x\leq -38
Tangohia te 56 i te 18, ka -38.
x\leq -\frac{38}{9}
Whakawehea ngā taha e rua ki te 9. I te mea he tōrunga te 9, kāore e huri te ahunga koreōrite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}