Whakaoti mō y
y = \frac{5}{4} = 1\frac{1}{4} = 1.25
Graph
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
\frac{ 2 }{ 3 } \left( y-1 \right) = \frac{ 1 }{ 6 }
Tohaina
Kua tāruatia ki te papatopenga
y-1=\frac{1}{6}\times \frac{3}{2}
Me whakarea ngā taha e rua ki te \frac{3}{2}, te tau utu o \frac{2}{3}.
y-1=\frac{1\times 3}{6\times 2}
Me whakarea te \frac{1}{6} ki te \frac{3}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
y-1=\frac{3}{12}
Mahia ngā whakarea i roto i te hautanga \frac{1\times 3}{6\times 2}.
y-1=\frac{1}{4}
Whakahekea te hautanga \frac{3}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
y=\frac{1}{4}+1
Me tāpiri te 1 ki ngā taha e rua.
y=\frac{1}{4}+\frac{4}{4}
Me tahuri te 1 ki te hautau \frac{4}{4}.
y=\frac{1+4}{4}
Tā te mea he rite te tauraro o \frac{1}{4} me \frac{4}{4}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
y=\frac{5}{4}
Tāpirihia te 1 ki te 4, ka 5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}