Whakaoti mō x
x=\frac{1}{6}\approx 0.166666667
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{2}{3}\left(2x^{2}-9x+4+3\left(x-\frac{1}{3}\right)\left(\frac{1}{3}+x\right)\right)=\frac{2}{3}\left(5x^{2}-x\right)+\frac{14}{9}
Whakamahia te āhuatanga tuaritanga hei whakarea te 2x-1 ki te x-4 ka whakakotahi i ngā kupu rite.
\frac{2}{3}\left(2x^{2}-9x+4+\left(3x-1\right)\left(\frac{1}{3}+x\right)\right)=\frac{2}{3}\left(5x^{2}-x\right)+\frac{14}{9}
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x-\frac{1}{3}.
\frac{2}{3}\left(2x^{2}-9x+4+3x^{2}-\frac{1}{3}\right)=\frac{2}{3}\left(5x^{2}-x\right)+\frac{14}{9}
Whakamahia te āhuatanga tuaritanga hei whakarea te 3x-1 ki te \frac{1}{3}+x ka whakakotahi i ngā kupu rite.
\frac{2}{3}\left(5x^{2}-9x+4-\frac{1}{3}\right)=\frac{2}{3}\left(5x^{2}-x\right)+\frac{14}{9}
Pahekotia te 2x^{2} me 3x^{2}, ka 5x^{2}.
\frac{2}{3}\left(5x^{2}-9x+\frac{11}{3}\right)=\frac{2}{3}\left(5x^{2}-x\right)+\frac{14}{9}
Tangohia te \frac{1}{3} i te 4, ka \frac{11}{3}.
\frac{10}{3}x^{2}-6x+\frac{22}{9}=\frac{2}{3}\left(5x^{2}-x\right)+\frac{14}{9}
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{2}{3} ki te 5x^{2}-9x+\frac{11}{3}.
\frac{10}{3}x^{2}-6x+\frac{22}{9}=\frac{10}{3}x^{2}-\frac{2}{3}x+\frac{14}{9}
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{2}{3} ki te 5x^{2}-x.
\frac{10}{3}x^{2}-6x+\frac{22}{9}-\frac{10}{3}x^{2}=-\frac{2}{3}x+\frac{14}{9}
Tangohia te \frac{10}{3}x^{2} mai i ngā taha e rua.
-6x+\frac{22}{9}=-\frac{2}{3}x+\frac{14}{9}
Pahekotia te \frac{10}{3}x^{2} me -\frac{10}{3}x^{2}, ka 0.
-6x+\frac{22}{9}+\frac{2}{3}x=\frac{14}{9}
Me tāpiri te \frac{2}{3}x ki ngā taha e rua.
-\frac{16}{3}x+\frac{22}{9}=\frac{14}{9}
Pahekotia te -6x me \frac{2}{3}x, ka -\frac{16}{3}x.
-\frac{16}{3}x=\frac{14}{9}-\frac{22}{9}
Tangohia te \frac{22}{9} mai i ngā taha e rua.
-\frac{16}{3}x=-\frac{8}{9}
Tangohia te \frac{22}{9} i te \frac{14}{9}, ka -\frac{8}{9}.
x=-\frac{8}{9}\left(-\frac{3}{16}\right)
Me whakarea ngā taha e rua ki te -\frac{3}{16}, te tau utu o -\frac{16}{3}.
x=\frac{1}{6}
Whakareatia te -\frac{8}{9} ki te -\frac{3}{16}, ka \frac{1}{6}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}