Whakaoti mō x
x = \frac{32025}{223} = 143\frac{136}{223} \approx 143.609865471
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{2}{15}x+\frac{3\times 1}{35\times 5}x+122=x
Me whakarea te \frac{3}{35} ki te \frac{1}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{2}{15}x+\frac{3}{175}x+122=x
Mahia ngā whakarea i roto i te hautanga \frac{3\times 1}{35\times 5}.
\frac{79}{525}x+122=x
Pahekotia te \frac{2}{15}x me \frac{3}{175}x, ka \frac{79}{525}x.
\frac{79}{525}x+122-x=0
Tangohia te x mai i ngā taha e rua.
-\frac{446}{525}x+122=0
Pahekotia te \frac{79}{525}x me -x, ka -\frac{446}{525}x.
-\frac{446}{525}x=-122
Tangohia te 122 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x=-122\left(-\frac{525}{446}\right)
Me whakarea ngā taha e rua ki te -\frac{525}{446}, te tau utu o -\frac{446}{525}.
x=\frac{-122\left(-525\right)}{446}
Tuhia te -122\left(-\frac{525}{446}\right) hei hautanga kotahi.
x=\frac{64050}{446}
Whakareatia te -122 ki te -525, ka 64050.
x=\frac{32025}{223}
Whakahekea te hautanga \frac{64050}{446} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}