Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{2\left(\sqrt{7}-5\right)}{\left(\sqrt{7}+5\right)\left(\sqrt{7}-5\right)}
Whakangāwaritia te tauraro o \frac{2}{\sqrt{7}+5} mā te whakarea i te taurunga me te tauraro ki te \sqrt{7}-5.
\frac{2\left(\sqrt{7}-5\right)}{\left(\sqrt{7}\right)^{2}-5^{2}}
Whakaarohia te \left(\sqrt{7}+5\right)\left(\sqrt{7}-5\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(\sqrt{7}-5\right)}{7-25}
Pūrua \sqrt{7}. Pūrua 5.
\frac{2\left(\sqrt{7}-5\right)}{-18}
Tangohia te 25 i te 7, ka -18.
-\frac{1}{9}\left(\sqrt{7}-5\right)
Whakawehea te 2\left(\sqrt{7}-5\right) ki te -18, kia riro ko -\frac{1}{9}\left(\sqrt{7}-5\right).
-\frac{1}{9}\sqrt{7}-\frac{1}{9}\left(-5\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -\frac{1}{9} ki te \sqrt{7}-5.
-\frac{1}{9}\sqrt{7}+\frac{-\left(-5\right)}{9}
Tuhia te -\frac{1}{9}\left(-5\right) hei hautanga kotahi.
-\frac{1}{9}\sqrt{7}+\frac{5}{9}
Whakareatia te -1 ki te -5, ka 5.