\frac{ 19 }{ 56 } - \frac{ 1 }{ 72 } - \frac{ 10 }{ 84 } + \frac{ 8 }{ 63 } ==
Aromātai
\frac{1}{3}\approx 0.333333333
Tauwehe
\frac{1}{3} = 0.3333333333333333
Tohaina
Kua tāruatia ki te papatopenga
\frac{171}{504}-\frac{7}{504}-\frac{10}{84}+\frac{8}{63}
Ko te maha noa iti rawa atu o 56 me 72 ko 504. Me tahuri \frac{19}{56} me \frac{1}{72} ki te hautau me te tautūnga 504.
\frac{171-7}{504}-\frac{10}{84}+\frac{8}{63}
Tā te mea he rite te tauraro o \frac{171}{504} me \frac{7}{504}, me tango rāua mā te tango i ō raua taurunga.
\frac{164}{504}-\frac{10}{84}+\frac{8}{63}
Tangohia te 7 i te 171, ka 164.
\frac{41}{126}-\frac{10}{84}+\frac{8}{63}
Whakahekea te hautanga \frac{164}{504} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{41}{126}-\frac{5}{42}+\frac{8}{63}
Whakahekea te hautanga \frac{10}{84} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{41}{126}-\frac{15}{126}+\frac{8}{63}
Ko te maha noa iti rawa atu o 126 me 42 ko 126. Me tahuri \frac{41}{126} me \frac{5}{42} ki te hautau me te tautūnga 126.
\frac{41-15}{126}+\frac{8}{63}
Tā te mea he rite te tauraro o \frac{41}{126} me \frac{15}{126}, me tango rāua mā te tango i ō raua taurunga.
\frac{26}{126}+\frac{8}{63}
Tangohia te 15 i te 41, ka 26.
\frac{13}{63}+\frac{8}{63}
Whakahekea te hautanga \frac{26}{126} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{13+8}{63}
Tā te mea he rite te tauraro o \frac{13}{63} me \frac{8}{63}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{21}{63}
Tāpirihia te 13 ki te 8, ka 21.
\frac{1}{3}
Whakahekea te hautanga \frac{21}{63} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 21.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}