Aromātai
\frac{8383375}{3}\approx 2794458.333333333
Tauwehe
\frac{5 ^ {3} \cdot 7 \cdot 11 \cdot 13 \cdot 67}{3} = 2794458\frac{1}{3} = 2794458.3333333335
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
\frac{ 18425 \times 50 }{ 30 } +18425 \times 50 \times 3=
Tohaina
Kua tāruatia ki te papatopenga
\frac{921250}{30}+18425\times 50\times 3
Whakareatia te 18425 ki te 50, ka 921250.
\frac{92125}{3}+18425\times 50\times 3
Whakahekea te hautanga \frac{921250}{30} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
\frac{92125}{3}+921250\times 3
Whakareatia te 18425 ki te 50, ka 921250.
\frac{92125}{3}+2763750
Whakareatia te 921250 ki te 3, ka 2763750.
\frac{92125}{3}+\frac{8291250}{3}
Me tahuri te 2763750 ki te hautau \frac{8291250}{3}.
\frac{92125+8291250}{3}
Tā te mea he rite te tauraro o \frac{92125}{3} me \frac{8291250}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{8383375}{3}
Tāpirihia te 92125 ki te 8291250, ka 8383375.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}