Whakaoti mō x
x = -\frac{6620}{73} = -90\frac{50}{73} \approx -90.684931507
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{18}{140+x}=\frac{36.5}{100}
Whakawehea ngā taha e rua ki te 100.
\frac{18}{140+x}=\frac{365}{1000}
Whakarohaina te \frac{36.5}{100} mā te whakarea i te taurunga me te tauraro ki te 10.
\frac{18}{140+x}=\frac{73}{200}
Whakahekea te hautanga \frac{365}{1000} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
200\times 18=73\left(x+140\right)
Tē taea kia ōrite te tāupe x ki -140 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 200\left(x+140\right), arā, te tauraro pātahi he tino iti rawa te kitea o 140+x,200.
3600=73\left(x+140\right)
Whakareatia te 200 ki te 18, ka 3600.
3600=73x+10220
Whakamahia te āhuatanga tohatoha hei whakarea te 73 ki te x+140.
73x+10220=3600
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
73x=3600-10220
Tangohia te 10220 mai i ngā taha e rua.
73x=-6620
Tangohia te 10220 i te 3600, ka -6620.
x=\frac{-6620}{73}
Whakawehea ngā taha e rua ki te 73.
x=-\frac{6620}{73}
Ka taea te hautanga \frac{-6620}{73} te tuhi anō ko -\frac{6620}{73} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}