Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{162}{n^{2}}\times \frac{\left(2n^{2}+n\right)\left(n+1\right)}{6}
Whakamahia te āhuatanga tohatoha hei whakarea te n ki te 2n+1.
\frac{162}{n^{2}}\times \frac{2n^{3}+3n^{2}+n}{6}
Whakamahia te āhuatanga tuaritanga hei whakarea te 2n^{2}+n ki te n+1 ka whakakotahi i ngā kupu rite.
\frac{162\left(2n^{3}+3n^{2}+n\right)}{n^{2}\times 6}
Me whakarea te \frac{162}{n^{2}} ki te \frac{2n^{3}+3n^{2}+n}{6} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{27\left(2n^{3}+3n^{2}+n\right)}{n^{2}}
Me whakakore tahi te 6 i te taurunga me te tauraro.
\frac{27n\left(n+1\right)\left(2n+1\right)}{n^{2}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{27\left(n+1\right)\left(2n+1\right)}{n}
Me whakakore tahi te n i te taurunga me te tauraro.
\frac{54n^{2}+81n+27}{n}
Me whakaroha te kīanga.
\frac{162}{n^{2}}\times \frac{\left(2n^{2}+n\right)\left(n+1\right)}{6}
Whakamahia te āhuatanga tohatoha hei whakarea te n ki te 2n+1.
\frac{162}{n^{2}}\times \frac{2n^{3}+3n^{2}+n}{6}
Whakamahia te āhuatanga tuaritanga hei whakarea te 2n^{2}+n ki te n+1 ka whakakotahi i ngā kupu rite.
\frac{162\left(2n^{3}+3n^{2}+n\right)}{n^{2}\times 6}
Me whakarea te \frac{162}{n^{2}} ki te \frac{2n^{3}+3n^{2}+n}{6} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{27\left(2n^{3}+3n^{2}+n\right)}{n^{2}}
Me whakakore tahi te 6 i te taurunga me te tauraro.
\frac{27n\left(n+1\right)\left(2n+1\right)}{n^{2}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{27\left(n+1\right)\left(2n+1\right)}{n}
Me whakakore tahi te n i te taurunga me te tauraro.
\frac{54n^{2}+81n+27}{n}
Me whakaroha te kīanga.