Tauwehe
\frac{16\left(3x^{2}-10y\right)\left(3x^{2}+10y\right)\left(9x^{4}+100y^{2}\right)}{50625}
Aromātai
\frac{16x^{8}}{625}-\frac{256y^{4}}{81}
Tohaina
Kua tāruatia ki te papatopenga
\frac{16\left(81x^{8}-10000y^{4}\right)}{50625}
Tauwehea te \frac{16}{50625}.
\left(9x^{4}-100y^{2}\right)\left(9x^{4}+100y^{2}\right)
Whakaarohia te 81x^{8}-10000y^{4}. Tuhia anō te 81x^{8}-10000y^{4} hei \left(9x^{4}\right)^{2}-\left(100y^{2}\right)^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(3x^{2}-10y\right)\left(3x^{2}+10y\right)
Whakaarohia te 9x^{4}-100y^{2}. Tuhia anō te 9x^{4}-100y^{2} hei \left(3x^{2}\right)^{2}-\left(10y\right)^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\frac{16\left(3x^{2}-10y\right)\left(3x^{2}+10y\right)\left(9x^{4}+100y^{2}\right)}{50625}
Me tuhi anō te kīanga whakatauwehe katoa.
\frac{81\times 16x^{8}}{50625}-\frac{625\times 256y^{4}}{50625}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 625 me 81 ko 50625. Whakareatia \frac{16x^{8}}{625} ki te \frac{81}{81}. Whakareatia \frac{256y^{4}}{81} ki te \frac{625}{625}.
\frac{81\times 16x^{8}-625\times 256y^{4}}{50625}
Tā te mea he rite te tauraro o \frac{81\times 16x^{8}}{50625} me \frac{625\times 256y^{4}}{50625}, me tango rāua mā te tango i ō raua taurunga.
\frac{1296x^{8}-160000y^{4}}{50625}
Mahia ngā whakarea i roto o 81\times 16x^{8}-625\times 256y^{4}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}