Aromātai
\frac{187}{12}\approx 15.583333333
Tauwehe
\frac{11 \cdot 17}{3 \cdot 2 ^ {2}} = 15\frac{7}{12} = 15.583333333333334
Tohaina
Kua tāruatia ki te papatopenga
\frac{32+15+15.5\times 3}{6}
Whakareatia te 16 ki te 2, ka 32. Whakareatia te 15 ki te 1, ka 15.
\frac{47+15.5\times 3}{6}
Tāpirihia te 32 ki te 15, ka 47.
\frac{47+46.5}{6}
Whakareatia te 15.5 ki te 3, ka 46.5.
\frac{93.5}{6}
Tāpirihia te 47 ki te 46.5, ka 93.5.
\frac{935}{60}
Whakarohaina te \frac{93.5}{6} mā te whakarea i te taurunga me te tauraro ki te 10.
\frac{187}{12}
Whakahekea te hautanga \frac{935}{60} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}