Whakaoti mō x
x=-\frac{36}{95}\approx -0.378947368
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(12x+6\right)\times 16=\left(x+12\right)\times 2
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -12,-\frac{1}{2} nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 6\left(x+12\right)\left(2x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o x+12,12x+6.
192x+96=\left(x+12\right)\times 2
Whakamahia te āhuatanga tohatoha hei whakarea te 12x+6 ki te 16.
192x+96=2x+24
Whakamahia te āhuatanga tohatoha hei whakarea te x+12 ki te 2.
192x+96-2x=24
Tangohia te 2x mai i ngā taha e rua.
190x+96=24
Pahekotia te 192x me -2x, ka 190x.
190x=24-96
Tangohia te 96 mai i ngā taha e rua.
190x=-72
Tangohia te 96 i te 24, ka -72.
x=\frac{-72}{190}
Whakawehea ngā taha e rua ki te 190.
x=-\frac{36}{95}
Whakahekea te hautanga \frac{-72}{190} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}