Whakaoti mō x
x = \frac{9}{5} = 1\frac{4}{5} = 1.8
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(x-3\right)\times 16=-\left(3+x\right)\times 4
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -3,3 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-3\right)\left(x+3\right), arā, te tauraro pātahi he tino iti rawa te kitea o 3+x,3-x.
16x-48=-\left(3+x\right)\times 4
Whakamahia te āhuatanga tohatoha hei whakarea te x-3 ki te 16.
16x-48=-4\left(3+x\right)
Whakareatia te -1 ki te 4, ka -4.
16x-48=-12-4x
Whakamahia te āhuatanga tohatoha hei whakarea te -4 ki te 3+x.
16x-48+4x=-12
Me tāpiri te 4x ki ngā taha e rua.
20x-48=-12
Pahekotia te 16x me 4x, ka 20x.
20x=-12+48
Me tāpiri te 48 ki ngā taha e rua.
20x=36
Tāpirihia te -12 ki te 48, ka 36.
x=\frac{36}{20}
Whakawehea ngā taha e rua ki te 20.
x=\frac{9}{5}
Whakahekea te hautanga \frac{36}{20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}