Whakaoti mō x
x=-\frac{77y}{18}+\frac{875}{3}
Whakaoti mō y
y=-\frac{18x}{77}+\frac{750}{11}
Graph
Tohaina
Kua tāruatia ki te papatopenga
120x-35000=-\frac{1540}{3}y
Tangohia te \frac{1540}{3}y mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
120x=-\frac{1540}{3}y+35000
Me tāpiri te 35000 ki ngā taha e rua.
120x=-\frac{1540y}{3}+35000
He hanga arowhānui tō te whārite.
\frac{120x}{120}=\frac{-\frac{1540y}{3}+35000}{120}
Whakawehea ngā taha e rua ki te 120.
x=\frac{-\frac{1540y}{3}+35000}{120}
Mā te whakawehe ki te 120 ka wetekia te whakareanga ki te 120.
x=-\frac{77y}{18}+\frac{875}{3}
Whakawehe -\frac{1540y}{3}+35000 ki te 120.
\frac{1540}{3}y-35000=-120x
Tangohia te 120x mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{1540}{3}y=-120x+35000
Me tāpiri te 35000 ki ngā taha e rua.
\frac{1540}{3}y=35000-120x
He hanga arowhānui tō te whārite.
\frac{\frac{1540}{3}y}{\frac{1540}{3}}=\frac{35000-120x}{\frac{1540}{3}}
Whakawehea ngā taha e rua o te whārite ki te \frac{1540}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
y=\frac{35000-120x}{\frac{1540}{3}}
Mā te whakawehe ki te \frac{1540}{3} ka wetekia te whakareanga ki te \frac{1540}{3}.
y=-\frac{18x}{77}+\frac{750}{11}
Whakawehe -120x+35000 ki te \frac{1540}{3} mā te whakarea -120x+35000 ki te tau huripoki o \frac{1540}{3}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}