Whakaoti mō x
x = \frac{2240}{9} = 248\frac{8}{9} \approx 248.888888889
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{1540\times 10}{3}+120x-35000=0
Tuhia te \frac{1540}{3}\times 10 hei hautanga kotahi.
\frac{15400}{3}+120x-35000=0
Whakareatia te 1540 ki te 10, ka 15400.
\frac{15400}{3}+120x-\frac{105000}{3}=0
Me tahuri te 35000 ki te hautau \frac{105000}{3}.
\frac{15400-105000}{3}+120x=0
Tā te mea he rite te tauraro o \frac{15400}{3} me \frac{105000}{3}, me tango rāua mā te tango i ō raua taurunga.
-\frac{89600}{3}+120x=0
Tangohia te 105000 i te 15400, ka -89600.
120x=\frac{89600}{3}
Me tāpiri te \frac{89600}{3} ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x=\frac{\frac{89600}{3}}{120}
Whakawehea ngā taha e rua ki te 120.
x=\frac{89600}{3\times 120}
Tuhia te \frac{\frac{89600}{3}}{120} hei hautanga kotahi.
x=\frac{89600}{360}
Whakareatia te 3 ki te 120, ka 360.
x=\frac{2240}{9}
Whakahekea te hautanga \frac{89600}{360} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 40.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}