Aromātai
188.4
Tauwehe
\frac{2 \cdot 3 \cdot 157}{5} = 188\frac{2}{5} = 188.4
Tohaina
Kua tāruatia ki te papatopenga
\frac{5}{12}\times 3.14\times 144
Whakahekea te hautanga \frac{150}{360} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 30.
\frac{5}{12}\times \frac{157}{50}\times 144
Me tahuri ki tau ā-ira 3.14 ki te hautau \frac{314}{100}. Whakahekea te hautanga \frac{314}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{5\times 157}{12\times 50}\times 144
Me whakarea te \frac{5}{12} ki te \frac{157}{50} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{785}{600}\times 144
Mahia ngā whakarea i roto i te hautanga \frac{5\times 157}{12\times 50}.
\frac{157}{120}\times 144
Whakahekea te hautanga \frac{785}{600} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{157\times 144}{120}
Tuhia te \frac{157}{120}\times 144 hei hautanga kotahi.
\frac{22608}{120}
Whakareatia te 157 ki te 144, ka 22608.
\frac{942}{5}
Whakahekea te hautanga \frac{22608}{120} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 24.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}