Whakaoti mō x
x=12
x=-12
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{150}{360}x^{2}=60
Me whakakore te \pi ki ngā taha e rua.
\frac{5}{12}x^{2}=60
Whakahekea te hautanga \frac{150}{360} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 30.
\frac{5}{12}x^{2}-60=0
Tangohia te 60 mai i ngā taha e rua.
x^{2}-144=0
Whakawehea ngā taha e rua ki te \frac{5}{12}.
\left(x-12\right)\left(x+12\right)=0
Whakaarohia te x^{2}-144. Tuhia anō te x^{2}-144 hei x^{2}-12^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=12 x=-12
Hei kimi otinga whārite, me whakaoti te x-12=0 me te x+12=0.
\frac{150}{360}x^{2}=60
Me whakakore te \pi ki ngā taha e rua.
\frac{5}{12}x^{2}=60
Whakahekea te hautanga \frac{150}{360} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 30.
x^{2}=60\times \frac{12}{5}
Me whakarea ngā taha e rua ki te \frac{12}{5}, te tau utu o \frac{5}{12}.
x^{2}=144
Whakareatia te 60 ki te \frac{12}{5}, ka 144.
x=12 x=-12
Tuhia te pūtakerua o ngā taha e rua o te whārite.
\frac{150}{360}x^{2}=60
Me whakakore te \pi ki ngā taha e rua.
\frac{5}{12}x^{2}=60
Whakahekea te hautanga \frac{150}{360} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 30.
\frac{5}{12}x^{2}-60=0
Tangohia te 60 mai i ngā taha e rua.
x=\frac{0±\sqrt{0^{2}-4\times \frac{5}{12}\left(-60\right)}}{2\times \frac{5}{12}}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi \frac{5}{12} mō a, 0 mō b, me -60 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times \frac{5}{12}\left(-60\right)}}{2\times \frac{5}{12}}
Pūrua 0.
x=\frac{0±\sqrt{-\frac{5}{3}\left(-60\right)}}{2\times \frac{5}{12}}
Whakareatia -4 ki te \frac{5}{12}.
x=\frac{0±\sqrt{100}}{2\times \frac{5}{12}}
Whakareatia -\frac{5}{3} ki te -60.
x=\frac{0±10}{2\times \frac{5}{12}}
Tuhia te pūtakerua o te 100.
x=\frac{0±10}{\frac{5}{6}}
Whakareatia 2 ki te \frac{5}{12}.
x=12
Nā, me whakaoti te whārite x=\frac{0±10}{\frac{5}{6}} ina he tāpiri te ±. Whakawehe 10 ki te \frac{5}{6} mā te whakarea 10 ki te tau huripoki o \frac{5}{6}.
x=-12
Nā, me whakaoti te whārite x=\frac{0±10}{\frac{5}{6}} ina he tango te ±. Whakawehe -10 ki te \frac{5}{6} mā te whakarea -10 ki te tau huripoki o \frac{5}{6}.
x=12 x=-12
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}