\frac{ 15 }{ x+15 } =6 \%
Whakaoti mō x
x=235
Graph
Tohaina
Kua tāruatia ki te papatopenga
100\times 15=\left(x+15\right)\times 6
Tē taea kia ōrite te tāupe x ki -15 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 100\left(x+15\right), arā, te tauraro pātahi he tino iti rawa te kitea o x+15,100.
1500=\left(x+15\right)\times 6
Whakareatia te 100 ki te 15, ka 1500.
1500=6x+90
Whakamahia te āhuatanga tohatoha hei whakarea te x+15 ki te 6.
6x+90=1500
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
6x=1500-90
Tangohia te 90 mai i ngā taha e rua.
6x=1410
Tangohia te 90 i te 1500, ka 1410.
x=\frac{1410}{6}
Whakawehea ngā taha e rua ki te 6.
x=235
Whakawehea te 1410 ki te 6, kia riro ko 235.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}