Whakaoti mō p
p=15
Tohaina
Kua tāruatia ki te papatopenga
\left(p+2\right)\times 15+p\left(6p-5\right)=6p\left(p+2\right)
Tē taea kia ōrite te tāupe p ki tētahi o ngā uara -2,0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te p\left(p+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o p,p+2.
15p+30+p\left(6p-5\right)=6p\left(p+2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te p+2 ki te 15.
15p+30+6p^{2}-5p=6p\left(p+2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te p ki te 6p-5.
10p+30+6p^{2}=6p\left(p+2\right)
Pahekotia te 15p me -5p, ka 10p.
10p+30+6p^{2}=6p^{2}+12p
Whakamahia te āhuatanga tohatoha hei whakarea te 6p ki te p+2.
10p+30+6p^{2}-6p^{2}=12p
Tangohia te 6p^{2} mai i ngā taha e rua.
10p+30=12p
Pahekotia te 6p^{2} me -6p^{2}, ka 0.
10p+30-12p=0
Tangohia te 12p mai i ngā taha e rua.
-2p+30=0
Pahekotia te 10p me -12p, ka -2p.
-2p=-30
Tangohia te 30 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
p=\frac{-30}{-2}
Whakawehea ngā taha e rua ki te -2.
p=15
Whakawehea te -30 ki te -2, kia riro ko 15.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}