Aromātai
\frac{152133bc}{200}
Whakaroha
\frac{152133bc}{200}
Pātaitai
Algebra
5 raruraru e ōrite ana ki:
\frac{ 15 }{ 8 } b16 \frac{ 3 }{ 20 } c25 \frac{ 3 }{ 25 }
Tohaina
Kua tāruatia ki te papatopenga
\frac{15}{8}b\times \frac{320+3}{20}c\times \frac{25\times 25+3}{25}
Whakareatia te 16 ki te 20, ka 320.
\frac{15}{8}b\times \frac{323}{20}c\times \frac{25\times 25+3}{25}
Tāpirihia te 320 ki te 3, ka 323.
\frac{15\times 323}{8\times 20}bc\times \frac{25\times 25+3}{25}
Me whakarea te \frac{15}{8} ki te \frac{323}{20} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{4845}{160}bc\times \frac{25\times 25+3}{25}
Mahia ngā whakarea i roto i te hautanga \frac{15\times 323}{8\times 20}.
\frac{969}{32}bc\times \frac{25\times 25+3}{25}
Whakahekea te hautanga \frac{4845}{160} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{969}{32}bc\times \frac{625+3}{25}
Whakareatia te 25 ki te 25, ka 625.
\frac{969}{32}bc\times \frac{628}{25}
Tāpirihia te 625 ki te 3, ka 628.
\frac{969\times 628}{32\times 25}bc
Me whakarea te \frac{969}{32} ki te \frac{628}{25} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{608532}{800}bc
Mahia ngā whakarea i roto i te hautanga \frac{969\times 628}{32\times 25}.
\frac{152133}{200}bc
Whakahekea te hautanga \frac{608532}{800} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{15}{8}b\times \frac{320+3}{20}c\times \frac{25\times 25+3}{25}
Whakareatia te 16 ki te 20, ka 320.
\frac{15}{8}b\times \frac{323}{20}c\times \frac{25\times 25+3}{25}
Tāpirihia te 320 ki te 3, ka 323.
\frac{15\times 323}{8\times 20}bc\times \frac{25\times 25+3}{25}
Me whakarea te \frac{15}{8} ki te \frac{323}{20} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{4845}{160}bc\times \frac{25\times 25+3}{25}
Mahia ngā whakarea i roto i te hautanga \frac{15\times 323}{8\times 20}.
\frac{969}{32}bc\times \frac{25\times 25+3}{25}
Whakahekea te hautanga \frac{4845}{160} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{969}{32}bc\times \frac{625+3}{25}
Whakareatia te 25 ki te 25, ka 625.
\frac{969}{32}bc\times \frac{628}{25}
Tāpirihia te 625 ki te 3, ka 628.
\frac{969\times 628}{32\times 25}bc
Me whakarea te \frac{969}{32} ki te \frac{628}{25} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{608532}{800}bc
Mahia ngā whakarea i roto i te hautanga \frac{969\times 628}{32\times 25}.
\frac{152133}{200}bc
Whakahekea te hautanga \frac{608532}{800} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}