Manatoko
teka
Tohaina
Kua tāruatia ki te papatopenga
\frac{15}{2250-3}=\frac{10}{4\times 1125\times 5}
Whakareatia te 2 ki te 1125, ka 2250.
\frac{15}{2247}=\frac{10}{4\times 1125\times 5}
Tangohia te 3 i te 2250, ka 2247.
\frac{5}{749}=\frac{10}{4\times 1125\times 5}
Whakahekea te hautanga \frac{15}{2247} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{5}{749}=\frac{10}{4500\times 5}
Whakareatia te 4 ki te 1125, ka 4500.
\frac{5}{749}=\frac{10}{22500}
Whakareatia te 4500 ki te 5, ka 22500.
\frac{5}{749}=\frac{1}{2250}
Whakahekea te hautanga \frac{10}{22500} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
\frac{11250}{1685250}=\frac{749}{1685250}
Ko te maha noa iti rawa atu o 749 me 2250 ko 1685250. Me tahuri \frac{5}{749} me \frac{1}{2250} ki te hautau me te tautūnga 1685250.
\text{false}
Whakatauritea te \frac{11250}{1685250} me te \frac{749}{1685250}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}