Manatoko
teka
Tohaina
Kua tāruatia ki te papatopenga
\frac{15}{22-3}=\frac{10}{4\times 11-5}
Whakareatia te 2 ki te 11, ka 22.
\frac{15}{19}=\frac{10}{4\times 11-5}
Tangohia te 3 i te 22, ka 19.
\frac{15}{19}=\frac{10}{44-5}
Whakareatia te 4 ki te 11, ka 44.
\frac{15}{19}=\frac{10}{39}
Tangohia te 5 i te 44, ka 39.
\frac{585}{741}=\frac{190}{741}
Ko te maha noa iti rawa atu o 19 me 39 ko 741. Me tahuri \frac{15}{19} me \frac{10}{39} ki te hautau me te tautūnga 741.
\text{false}
Whakatauritea te \frac{585}{741} me te \frac{190}{741}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}