Manatoko
pono
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
\frac{ 15 }{ 2 \cdot 1.125-3 } = \frac{ 10 }{ 4 \cdot 1.125-5 }
Tohaina
Kua tāruatia ki te papatopenga
\frac{15}{2.25-3}=\frac{10}{4\times 1.125-5}
Whakareatia te 2 ki te 1.125, ka 2.25.
\frac{15}{-0.75}=\frac{10}{4\times 1.125-5}
Tangohia te 3 i te 2.25, ka -0.75.
\frac{1500}{-75}=\frac{10}{4\times 1.125-5}
Whakarohaina te \frac{15}{-0.75} mā te whakarea i te taurunga me te tauraro ki te 100.
-20=\frac{10}{4\times 1.125-5}
Whakawehea te 1500 ki te -75, kia riro ko -20.
-20=\frac{10}{4.5-5}
Whakareatia te 4 ki te 1.125, ka 4.5.
-20=\frac{10}{-0.5}
Tangohia te 5 i te 4.5, ka -0.5.
-20=\frac{100}{-5}
Whakarohaina te \frac{10}{-0.5} mā te whakarea i te taurunga me te tauraro ki te 10.
-20=-20
Whakawehea te 100 ki te -5, kia riro ko -20.
\text{true}
Whakatauritea te -20 me te -20.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}