Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{14\left(5\sqrt{3}+\sqrt{5}\right)}{\left(5\sqrt{3}-\sqrt{5}\right)\left(5\sqrt{3}+\sqrt{5}\right)}
Whakangāwaritia te tauraro o \frac{14}{5\sqrt{3}-\sqrt{5}} mā te whakarea i te taurunga me te tauraro ki te 5\sqrt{3}+\sqrt{5}.
\frac{14\left(5\sqrt{3}+\sqrt{5}\right)}{\left(5\sqrt{3}\right)^{2}-\left(\sqrt{5}\right)^{2}}
Whakaarohia te \left(5\sqrt{3}-\sqrt{5}\right)\left(5\sqrt{3}+\sqrt{5}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{14\left(5\sqrt{3}+\sqrt{5}\right)}{5^{2}\left(\sqrt{3}\right)^{2}-\left(\sqrt{5}\right)^{2}}
Whakarohaina te \left(5\sqrt{3}\right)^{2}.
\frac{14\left(5\sqrt{3}+\sqrt{5}\right)}{25\left(\sqrt{3}\right)^{2}-\left(\sqrt{5}\right)^{2}}
Tātaihia te 5 mā te pū o 2, kia riro ko 25.
\frac{14\left(5\sqrt{3}+\sqrt{5}\right)}{25\times 3-\left(\sqrt{5}\right)^{2}}
Ko te pūrua o \sqrt{3} ko 3.
\frac{14\left(5\sqrt{3}+\sqrt{5}\right)}{75-\left(\sqrt{5}\right)^{2}}
Whakareatia te 25 ki te 3, ka 75.
\frac{14\left(5\sqrt{3}+\sqrt{5}\right)}{75-5}
Ko te pūrua o \sqrt{5} ko 5.
\frac{14\left(5\sqrt{3}+\sqrt{5}\right)}{70}
Tangohia te 5 i te 75, ka 70.
\frac{1}{5}\left(5\sqrt{3}+\sqrt{5}\right)
Whakawehea te 14\left(5\sqrt{3}+\sqrt{5}\right) ki te 70, kia riro ko \frac{1}{5}\left(5\sqrt{3}+\sqrt{5}\right).
\frac{1}{5}\times 5\sqrt{3}+\frac{1}{5}\sqrt{5}
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{5} ki te 5\sqrt{3}+\sqrt{5}.
\sqrt{3}+\frac{1}{5}\sqrt{5}
Me whakakore te 5 me te 5.