Aromātai
-\frac{d^{9}}{2}
Kimi Pārōnaki e ai ki d
-\frac{9d^{8}}{2}
Tohaina
Kua tāruatia ki te papatopenga
\frac{13^{1}c^{9}d^{10}}{\left(-26\right)^{1}c^{9}d^{1}}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
\frac{13^{1}}{\left(-26\right)^{1}}c^{9-9}d^{10-1}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{13^{1}}{\left(-26\right)^{1}}c^{0}d^{10-1}
Tango 9 mai i 9.
\frac{13^{1}}{\left(-26\right)^{1}}d^{10-1}
Mō tētahi tau a mahue te 0, a^{0}=1.
\frac{13^{1}}{\left(-26\right)^{1}}d^{9}
Tango 1 mai i 10.
-\frac{1}{2}d^{9}
Whakahekea te hautanga \frac{13}{-26} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 13.
\frac{\mathrm{d}}{\mathrm{d}d}(\frac{d^{9}}{-2})
Me whakakore tahi te 13dc^{9} i te taurunga me te tauraro.
9\left(-\frac{1}{2}\right)d^{9-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
-\frac{9}{2}d^{9-1}
Whakareatia 9 ki te -\frac{1}{2}.
-\frac{9}{2}d^{8}
Tango 1 mai i 9.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}