Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki d
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{13^{1}c^{9}d^{10}}{\left(-26\right)^{1}c^{9}d^{1}}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
\frac{13^{1}}{\left(-26\right)^{1}}c^{9-9}d^{10-1}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{13^{1}}{\left(-26\right)^{1}}c^{0}d^{10-1}
Tango 9 mai i 9.
\frac{13^{1}}{\left(-26\right)^{1}}d^{10-1}
Mō tētahi tau a mahue te 0, a^{0}=1.
\frac{13^{1}}{\left(-26\right)^{1}}d^{9}
Tango 1 mai i 10.
-\frac{1}{2}d^{9}
Whakahekea te hautanga \frac{13}{-26} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 13.
\frac{\mathrm{d}}{\mathrm{d}d}(\frac{d^{9}}{-2})
Me whakakore tahi te 13dc^{9} i te taurunga me te tauraro.
9\left(-\frac{1}{2}\right)d^{9-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
-\frac{9}{2}d^{9-1}
Whakareatia 9 ki te -\frac{1}{2}.
-\frac{9}{2}d^{8}
Tango 1 mai i 9.