Whakaoti mō x
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{13}{9}x^{2}+1-x^{2}\leq \frac{4}{3}x
Tangohia te x^{2} mai i ngā taha e rua.
\frac{4}{9}x^{2}+1\leq \frac{4}{3}x
Pahekotia te \frac{13}{9}x^{2} me -x^{2}, ka \frac{4}{9}x^{2}.
\frac{4}{9}x^{2}+1-\frac{4}{3}x\leq 0
Tangohia te \frac{4}{3}x mai i ngā taha e rua.
\frac{4}{9}x^{2}+1-\frac{4}{3}x=0
Kia whakaotia te koreōrite, me tauwehe te taha mauī. Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-\frac{4}{3}\right)±\sqrt{\left(-\frac{4}{3}\right)^{2}-4\times \frac{4}{9}\times 1}}{\frac{4}{9}\times 2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te \frac{4}{9} mō te a, te -\frac{4}{3} mō te b, me te 1 mō te c i te ture pūrua.
x=\frac{\frac{4}{3}±0}{\frac{8}{9}}
Mahia ngā tātaitai.
x=\frac{3}{2}
He ōrite ngā whakatau.
\frac{4}{9}\left(x-\frac{3}{2}\right)^{2}\leq 0
Tuhia anō te koreōrite mā te whakamahi i ngā otinga i whiwhi.
x=\frac{3}{2}
E mau ana te koreōrite mō x=\frac{3}{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}