Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{13\left(4-\sqrt{3}\right)}{\left(4+\sqrt{3}\right)\left(4-\sqrt{3}\right)}
Whakangāwaritia te tauraro o \frac{13}{4+\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te 4-\sqrt{3}.
\frac{13\left(4-\sqrt{3}\right)}{4^{2}-\left(\sqrt{3}\right)^{2}}
Whakaarohia te \left(4+\sqrt{3}\right)\left(4-\sqrt{3}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{13\left(4-\sqrt{3}\right)}{16-3}
Pūrua 4. Pūrua \sqrt{3}.
\frac{13\left(4-\sqrt{3}\right)}{13}
Tangohia te 3 i te 16, ka 13.
4-\sqrt{3}
Me whakakore te 13 me te 13.