Whakaoti mō x
x = \frac{799}{312} = 2\frac{175}{312} \approx 2.560897436
Graph
Tohaina
Kua tāruatia ki te papatopenga
12x-10=36.96\left(x-2\right)
Tē taea kia ōrite te tāupe x ki 2 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te 12\left(x-2\right).
12x-10=36.96x-73.92
Whakamahia te āhuatanga tohatoha hei whakarea te 36.96 ki te x-2.
12x-10-36.96x=-73.92
Tangohia te 36.96x mai i ngā taha e rua.
-24.96x-10=-73.92
Pahekotia te 12x me -36.96x, ka -24.96x.
-24.96x=-73.92+10
Me tāpiri te 10 ki ngā taha e rua.
-24.96x=-63.92
Tāpirihia te -73.92 ki te 10, ka -63.92.
x=\frac{-63.92}{-24.96}
Whakawehea ngā taha e rua ki te -24.96.
x=\frac{-6392}{-2496}
Whakarohaina te \frac{-63.92}{-24.96} mā te whakarea i te taurunga me te tauraro ki te 100.
x=\frac{799}{312}
Whakahekea te hautanga \frac{-6392}{-2496} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te -8.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}