Aromātai
\frac{825\sqrt{3}-1485}{2}\approx -28.029041878
Tauwehe
\frac{165 {(5 \sqrt{3} - 9)}}{2} = -28.029041877838196
Tohaina
Kua tāruatia ki te papatopenga
\frac{12\left(-55\right)}{12+\frac{2\times 10}{\sqrt{3}}}
Tangohia te 175 i te 120, ka -55.
\frac{-660}{12+\frac{2\times 10}{\sqrt{3}}}
Whakareatia te 12 ki te -55, ka -660.
\frac{-660}{12+\frac{20}{\sqrt{3}}}
Whakareatia te 2 ki te 10, ka 20.
\frac{-660}{12+\frac{20\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}
Whakangāwaritia te tauraro o \frac{20}{\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\frac{-660}{12+\frac{20\sqrt{3}}{3}}
Ko te pūrua o \sqrt{3} ko 3.
\frac{-660}{\frac{12\times 3}{3}+\frac{20\sqrt{3}}{3}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 12 ki te \frac{3}{3}.
\frac{-660}{\frac{12\times 3+20\sqrt{3}}{3}}
Tā te mea he rite te tauraro o \frac{12\times 3}{3} me \frac{20\sqrt{3}}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{-660}{\frac{36+20\sqrt{3}}{3}}
Mahia ngā whakarea i roto o 12\times 3+20\sqrt{3}.
\frac{-660\times 3}{36+20\sqrt{3}}
Whakawehe -660 ki te \frac{36+20\sqrt{3}}{3} mā te whakarea -660 ki te tau huripoki o \frac{36+20\sqrt{3}}{3}.
\frac{-660\times 3\left(36-20\sqrt{3}\right)}{\left(36+20\sqrt{3}\right)\left(36-20\sqrt{3}\right)}
Whakangāwaritia te tauraro o \frac{-660\times 3}{36+20\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te 36-20\sqrt{3}.
\frac{-660\times 3\left(36-20\sqrt{3}\right)}{36^{2}-\left(20\sqrt{3}\right)^{2}}
Whakaarohia te \left(36+20\sqrt{3}\right)\left(36-20\sqrt{3}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{-1980\left(36-20\sqrt{3}\right)}{36^{2}-\left(20\sqrt{3}\right)^{2}}
Whakareatia te -660 ki te 3, ka -1980.
\frac{-1980\left(36-20\sqrt{3}\right)}{1296-\left(20\sqrt{3}\right)^{2}}
Tātaihia te 36 mā te pū o 2, kia riro ko 1296.
\frac{-1980\left(36-20\sqrt{3}\right)}{1296-20^{2}\left(\sqrt{3}\right)^{2}}
Whakarohaina te \left(20\sqrt{3}\right)^{2}.
\frac{-1980\left(36-20\sqrt{3}\right)}{1296-400\left(\sqrt{3}\right)^{2}}
Tātaihia te 20 mā te pū o 2, kia riro ko 400.
\frac{-1980\left(36-20\sqrt{3}\right)}{1296-400\times 3}
Ko te pūrua o \sqrt{3} ko 3.
\frac{-1980\left(36-20\sqrt{3}\right)}{1296-1200}
Whakareatia te 400 ki te 3, ka 1200.
\frac{-1980\left(36-20\sqrt{3}\right)}{96}
Tangohia te 1200 i te 1296, ka 96.
-\frac{165}{8}\left(36-20\sqrt{3}\right)
Whakawehea te -1980\left(36-20\sqrt{3}\right) ki te 96, kia riro ko -\frac{165}{8}\left(36-20\sqrt{3}\right).
-\frac{165}{8}\times 36-\frac{165}{8}\left(-20\right)\sqrt{3}
Whakamahia te āhuatanga tohatoha hei whakarea te -\frac{165}{8} ki te 36-20\sqrt{3}.
\frac{-165\times 36}{8}-\frac{165}{8}\left(-20\right)\sqrt{3}
Tuhia te -\frac{165}{8}\times 36 hei hautanga kotahi.
\frac{-5940}{8}-\frac{165}{8}\left(-20\right)\sqrt{3}
Whakareatia te -165 ki te 36, ka -5940.
-\frac{1485}{2}-\frac{165}{8}\left(-20\right)\sqrt{3}
Whakahekea te hautanga \frac{-5940}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
-\frac{1485}{2}+\frac{-165\left(-20\right)}{8}\sqrt{3}
Tuhia te -\frac{165}{8}\left(-20\right) hei hautanga kotahi.
-\frac{1485}{2}+\frac{3300}{8}\sqrt{3}
Whakareatia te -165 ki te -20, ka 3300.
-\frac{1485}{2}+\frac{825}{2}\sqrt{3}
Whakahekea te hautanga \frac{3300}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}