Aromātai
\frac{4}{x}
Kimi Pārōnaki e ai ki x
-\frac{4}{x^{2}}
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{12}{x\left(x+2\right)}-\frac{2}{x}+\frac{6}{x+2}
Tauwehea te x^{2}+2x.
\frac{12}{x\left(x+2\right)}-\frac{2\left(x+2\right)}{x\left(x+2\right)}+\frac{6}{x+2}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o x\left(x+2\right) me x ko x\left(x+2\right). Whakareatia \frac{2}{x} ki te \frac{x+2}{x+2}.
\frac{12-2\left(x+2\right)}{x\left(x+2\right)}+\frac{6}{x+2}
Tā te mea he rite te tauraro o \frac{12}{x\left(x+2\right)} me \frac{2\left(x+2\right)}{x\left(x+2\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{12-2x-4}{x\left(x+2\right)}+\frac{6}{x+2}
Mahia ngā whakarea i roto o 12-2\left(x+2\right).
\frac{8-2x}{x\left(x+2\right)}+\frac{6}{x+2}
Whakakotahitia ngā kupu rite i 12-2x-4.
\frac{8-2x}{x\left(x+2\right)}+\frac{6x}{x\left(x+2\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o x\left(x+2\right) me x+2 ko x\left(x+2\right). Whakareatia \frac{6}{x+2} ki te \frac{x}{x}.
\frac{8-2x+6x}{x\left(x+2\right)}
Tā te mea he rite te tauraro o \frac{8-2x}{x\left(x+2\right)} me \frac{6x}{x\left(x+2\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{8+4x}{x\left(x+2\right)}
Whakakotahitia ngā kupu rite i 8-2x+6x.
\frac{4\left(x+2\right)}{x\left(x+2\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{8+4x}{x\left(x+2\right)}.
\frac{4}{x}
Me whakakore tahi te x+2 i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{12}{x\left(x+2\right)}-\frac{2}{x}+\frac{6}{x+2})
Tauwehea te x^{2}+2x.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{12}{x\left(x+2\right)}-\frac{2\left(x+2\right)}{x\left(x+2\right)}+\frac{6}{x+2})
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o x\left(x+2\right) me x ko x\left(x+2\right). Whakareatia \frac{2}{x} ki te \frac{x+2}{x+2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{12-2\left(x+2\right)}{x\left(x+2\right)}+\frac{6}{x+2})
Tā te mea he rite te tauraro o \frac{12}{x\left(x+2\right)} me \frac{2\left(x+2\right)}{x\left(x+2\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{12-2x-4}{x\left(x+2\right)}+\frac{6}{x+2})
Mahia ngā whakarea i roto o 12-2\left(x+2\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{8-2x}{x\left(x+2\right)}+\frac{6}{x+2})
Whakakotahitia ngā kupu rite i 12-2x-4.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{8-2x}{x\left(x+2\right)}+\frac{6x}{x\left(x+2\right)})
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o x\left(x+2\right) me x+2 ko x\left(x+2\right). Whakareatia \frac{6}{x+2} ki te \frac{x}{x}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{8-2x+6x}{x\left(x+2\right)})
Tā te mea he rite te tauraro o \frac{8-2x}{x\left(x+2\right)} me \frac{6x}{x\left(x+2\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{8+4x}{x\left(x+2\right)})
Whakakotahitia ngā kupu rite i 8-2x+6x.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{4\left(x+2\right)}{x\left(x+2\right)})
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{8+4x}{x\left(x+2\right)}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{4}{x})
Me whakakore tahi te x+2 i te taurunga me te tauraro.
-4x^{-1-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
-4x^{-2}
Tango 1 mai i -1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}