Aromātai
3048\sqrt{2}\approx 4310.522938113
Tohaina
Kua tāruatia ki te papatopenga
\frac{101600}{2\times \frac{1\times 100}{6\sqrt{2}}}
Tātaihia te 10 mā te pū o 2, kia riro ko 100.
\frac{101600}{2\times \frac{100}{6\sqrt{2}}}
Whakareatia te 1 ki te 100, ka 100.
\frac{101600}{2\times \frac{100\sqrt{2}}{6\left(\sqrt{2}\right)^{2}}}
Whakangāwaritia te tauraro o \frac{100}{6\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
\frac{101600}{2\times \frac{100\sqrt{2}}{6\times 2}}
Ko te pūrua o \sqrt{2} ko 2.
\frac{101600}{2\times \frac{25\sqrt{2}}{3}}
Me whakakore tahi te 2\times 2 i te taurunga me te tauraro.
\frac{101600}{\frac{2\times 25\sqrt{2}}{3}}
Tuhia te 2\times \frac{25\sqrt{2}}{3} hei hautanga kotahi.
\frac{101600\times 3}{2\times 25\sqrt{2}}
Whakawehe 101600 ki te \frac{2\times 25\sqrt{2}}{3} mā te whakarea 101600 ki te tau huripoki o \frac{2\times 25\sqrt{2}}{3}.
\frac{3\times 2032}{\sqrt{2}}
Me whakakore tahi te 2\times 25 i te taurunga me te tauraro.
\frac{3\times 2032\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Whakangāwaritia te tauraro o \frac{3\times 2032}{\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
\frac{3\times 2032\sqrt{2}}{2}
Ko te pūrua o \sqrt{2} ko 2.
\frac{6096\sqrt{2}}{2}
Whakareatia te 3 ki te 2032, ka 6096.
3048\sqrt{2}
Whakawehea te 6096\sqrt{2} ki te 2, kia riro ko 3048\sqrt{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}