Aromātai
\frac{25}{14}\approx 1.785714286
Tauwehe
\frac{5 ^ {2}}{2 \cdot 7} = 1\frac{11}{14} = 1.7857142857142858
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(15\times 25-15\times 45\right)^{2}}{3\times 7\times 40\times 60}
Me whakakore tahi te 10\times 10 i te taurunga me te tauraro.
\frac{\left(375-15\times 45\right)^{2}}{3\times 7\times 40\times 60}
Whakareatia te 15 ki te 25, ka 375.
\frac{\left(375-675\right)^{2}}{3\times 7\times 40\times 60}
Whakareatia te 15 ki te 45, ka 675.
\frac{\left(-300\right)^{2}}{3\times 7\times 40\times 60}
Tangohia te 675 i te 375, ka -300.
\frac{90000}{3\times 7\times 40\times 60}
Tātaihia te -300 mā te pū o 2, kia riro ko 90000.
\frac{90000}{21\times 40\times 60}
Whakareatia te 3 ki te 7, ka 21.
\frac{90000}{840\times 60}
Whakareatia te 21 ki te 40, ka 840.
\frac{90000}{50400}
Whakareatia te 840 ki te 60, ka 50400.
\frac{25}{14}
Whakahekea te hautanga \frac{90000}{50400} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3600.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}