Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{100\sqrt{3}\left(1+\sqrt{3}\right)}{\left(1-\sqrt{3}\right)\left(1+\sqrt{3}\right)}=x
Whakangāwaritia te tauraro o \frac{100\sqrt{3}}{1-\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te 1+\sqrt{3}.
\frac{100\sqrt{3}\left(1+\sqrt{3}\right)}{1^{2}-\left(\sqrt{3}\right)^{2}}=x
Whakaarohia te \left(1-\sqrt{3}\right)\left(1+\sqrt{3}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{100\sqrt{3}\left(1+\sqrt{3}\right)}{1-3}=x
Pūrua 1. Pūrua \sqrt{3}.
\frac{100\sqrt{3}\left(1+\sqrt{3}\right)}{-2}=x
Tangohia te 3 i te 1, ka -2.
\frac{100\sqrt{3}+100\left(\sqrt{3}\right)^{2}}{-2}=x
Whakamahia te āhuatanga tohatoha hei whakarea te 100\sqrt{3} ki te 1+\sqrt{3}.
\frac{100\sqrt{3}+100\times 3}{-2}=x
Ko te pūrua o \sqrt{3} ko 3.
\frac{100\sqrt{3}+300}{-2}=x
Whakareatia te 100 ki te 3, ka 300.
-50\sqrt{3}-150=x
Whakawehea ia wā o 100\sqrt{3}+300 ki te -2, kia riro ko -50\sqrt{3}-150.
x=-50\sqrt{3}-150
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.