Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{100\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}=x
Whakangāwaritia te tauraro o \frac{100}{\sqrt{3}-1} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}+1.
\frac{100\left(\sqrt{3}+1\right)}{\left(\sqrt{3}\right)^{2}-1^{2}}=x
Whakaarohia te \left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{100\left(\sqrt{3}+1\right)}{3-1}=x
Pūrua \sqrt{3}. Pūrua 1.
\frac{100\left(\sqrt{3}+1\right)}{2}=x
Tangohia te 1 i te 3, ka 2.
50\left(\sqrt{3}+1\right)=x
Whakawehea te 100\left(\sqrt{3}+1\right) ki te 2, kia riro ko 50\left(\sqrt{3}+1\right).
50\sqrt{3}+50=x
Whakamahia te āhuatanga tohatoha hei whakarea te 50 ki te \sqrt{3}+1.
x=50\sqrt{3}+50
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.