Aromātai
306.990289958873115
Tauwehe
\frac{3 \cdot 7 \cdot 373 \cdot 25679 \cdot 305244889}{2 ^ {15} \cdot 5 ^ {14}} = 306\frac{198057991774624}{200000000000000} = 306.9902899588731
Tohaina
Kua tāruatia ki te papatopenga
\frac{100}{\sqrt{2}} \frac{7 \cdot 3}{\sqrt{2}} 0.2923717047227363
Evaluate trigonometric functions in the problem
0.2923717047227363\times \frac{100\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\times \frac{7\times 3}{\sqrt{2}}
Whakangāwaritia te tauraro o \frac{100}{\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
0.2923717047227363\times \frac{100\sqrt{2}}{2}\times \frac{7\times 3}{\sqrt{2}}
Ko te pūrua o \sqrt{2} ko 2.
0.2923717047227363\times 50\sqrt{2}\times \frac{7\times 3}{\sqrt{2}}
Whakawehea te 100\sqrt{2} ki te 2, kia riro ko 50\sqrt{2}.
14.618585236136815\sqrt{2}\times \frac{7\times 3}{\sqrt{2}}
Whakareatia te 0.2923717047227363 ki te 50, ka 14.618585236136815.
14.618585236136815\sqrt{2}\times \frac{21}{\sqrt{2}}
Whakareatia te 7 ki te 3, ka 21.
14.618585236136815\sqrt{2}\times \frac{21\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Whakangāwaritia te tauraro o \frac{21}{\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
14.618585236136815\sqrt{2}\times \frac{21\sqrt{2}}{2}
Ko te pūrua o \sqrt{2} ko 2.
14.618585236136815\times \frac{\sqrt{2}\times 21\sqrt{2}}{2}
Tuhia te \sqrt{2}\times \frac{21\sqrt{2}}{2} hei hautanga kotahi.
14.618585236136815\times \frac{2\times 21}{2}
Whakareatia te \sqrt{2} ki te \sqrt{2}, ka 2.
14.618585236136815\times 21
Me whakakore te 2 me te 2.
306.990289958873115
Whakareatia te 14.618585236136815 ki te 21, ka 306.990289958873115.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}