Whakaoti mō x
x=5
Graph
Tohaina
Kua tāruatia ki te papatopenga
3\times 10+3\left(x-3\right)\left(-3\right)=12
Tē taea kia ōrite te tāupe x ki 3 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 3\left(x-3\right), arā, te tauraro pātahi he tino iti rawa te kitea o x-3,3x-9.
30+3\left(x-3\right)\left(-3\right)=12
Whakareatia te 3 ki te 10, ka 30.
30-9\left(x-3\right)=12
Whakareatia te 3 ki te -3, ka -9.
30-9x+27=12
Whakamahia te āhuatanga tohatoha hei whakarea te -9 ki te x-3.
57-9x=12
Tāpirihia te 30 ki te 27, ka 57.
-9x=12-57
Tangohia te 57 mai i ngā taha e rua.
-9x=-45
Tangohia te 57 i te 12, ka -45.
x=\frac{-45}{-9}
Whakawehea ngā taha e rua ki te -9.
x=5
Whakawehea te -45 ki te -9, kia riro ko 5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}