Aromātai
\frac{1}{5280}\approx 0.000189394
Tauwehe
\frac{1}{3 \cdot 5 \cdot 11 \cdot 2 ^ {5}} = 0.0001893939393939394
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{1.4}{28}}{6\times 44}
Tuhia te \frac{\frac{\frac{1.4}{28}}{6}}{44} hei hautanga kotahi.
\frac{\frac{14}{280}}{6\times 44}
Whakarohaina te \frac{1.4}{28} mā te whakarea i te taurunga me te tauraro ki te 10.
\frac{\frac{1}{20}}{6\times 44}
Whakahekea te hautanga \frac{14}{280} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 14.
\frac{\frac{1}{20}}{264}
Whakareatia te 6 ki te 44, ka 264.
\frac{1}{20\times 264}
Tuhia te \frac{\frac{1}{20}}{264} hei hautanga kotahi.
\frac{1}{5280}
Whakareatia te 20 ki te 264, ka 5280.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}