Whakaoti mō x
x\in (-3,1]
Graph
Tohaina
Kua tāruatia ki te papatopenga
1-x\leq 0 x+3<0
Kia ≥0 rawa te otinga, hei ≤0 a 1-x me x+3 tahi, hei ≥0 rānei rāua tahi, otiia tē taea ai hei kore te x+3. Whakaarohia te tauira ina tōraro tahi a 1-x\leq 0 me x+3.
x\in \emptyset
He teka tēnei mō tētahi x ahakoa.
1-x\geq 0 x+3>0
Whakaarohia te tauira ina tōrunga tahi a 1-x\geq 0 me x+3.
x\in (-3,1]
Te otinga e whakaea i ngā koreōrite e rua ko x\in \left(-3,1\right].
x\in (-3,1]
Ko te otinga whakamutunga ko te whakakotahi i ngā otinga kua whiwhi.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}